期刊文献+

Cell sheet formation enhances the therapeutic effects of human umbilical cord mesenchymal stem cells on myocardial infarction as a bioactive material 被引量:6

原文传递
导出
摘要 Stem cell-based therapy has been used to treat ischaemic heart diseases for two decades.However,optimal cell types and transplantation methods remain unclear.This study evaluated the therapeutic effects of human umbilical cord mesenchymal stem cell(hUCMSC)sheet on myocardial infarction(MI).Methods:hUCMSCs expressing luciferase were generated by lentiviral transduction for in vivo bio-luminescent imaging tracking of cells.We applied a temperature-responsive cell culture surface-based method to form the hUCMSC sheet.Cell retention was evaluated using an in vivo bio-luminescent imaging tracking system.Unbiased transcriptional profiling of infarcted hearts and further immunohistochemical assessment of monocyte and macrophage subtypes were used to determine the mechanisms underlying the therapeutic effects of the hUCMSC sheet.Echocardiography and pathological analyses of heart sections were performed to evaluate cardiac function,angiogenesis and left ventricular remodelling.Results:When transplanted to the infarcted mouse hearts,hUCMSC sheet significantly improved the retention and survival compared with cell suspension.At the early stage of MI,hUCMSC sheet modulated inflammation by decreasing Mcp1-positive monocytes and CD68-positive macrophages and increasing Cx3cr1-positive non-classical macrophages,preserving the cardiomyocytes from acute injury.Moreover,the extracellular matrix produced by hUCMSC sheet then served as bioactive scaffold for the host cells to graft and generate new epicardial tissue,providing mechanical support and routes for revascularsation.These effects of hUCMSC sheet treatment significantly improved the cardiac function at days 7 and 28 post-MI.Conclusions:hUCMSC sheet formation dramatically improved the biological functions of hUCMSCs,mitigating adverse post-MI remodelling by modulating the inflammatory response and providing bioactive scaffold upon transplantation into the heart.Translational perspective:Due to its excellent availability as well as superior local cellular retention and survival,allogenic transplantation of hUCMSC sheets can more effectively acquire the biological functions of hUCMSCs,such as modulating inflammation and enhancing angiogenesis.Moreover,the hUCMSC sheet method allows the transfer of an intact extracellular matrix without introducing exogenous or synthetic biomaterial,further improving its clinical applicability.
出处 《Bioactive Materials》 SCIE 2021年第9期2999-3012,共14页 生物活性材料(英文)
基金 This work was supported by the Peking University Third Hospital Key Clinical Foundation[grant numbers BYSY2015007,BYSY2018039 and BYSYDL2019016 to Y.L.] the capital health research and development of special[grant number 2020-2-4096 to Y.L.] the Beijing Natural Science Foundation[grant number Z190013 to F.L.] the National Natural Science Foundation of China[grant number 81970205 to F.L.].
  • 相关文献

同被引文献10

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部