摘要
To improve the vibration-isolation performance of cab seats,the optimization model of the seat suspension system of construction machinery cabs is proposed based on the negative stiffness structure.The negative stiffness nonlinear kinetic equation is established by designing the seat negative stiffness suspension structure(NSS).Using MATLAB,the different parameters of the suspension system and their influences on the dynamic stiffness are analyzed.The ideal configuration parameter range of the suspension system is obtained.Meanwhile,the optimization model of NSS is proposed,and the vibration transmissibility characteristics are simulated and analyzed by different methods.The results show that the displacement and acceleration amplitudes of the optimized seat suspension system are evidently reduced,and the four-time power vibration dose value and root mean square calculation values in the vertical vibration direction of the seat decrease by 86%and 87%,respectively.Seat effective amplitude transmissibility(SEAT)and the vibration transmissibility ratio values also decrease.Moreover,the peak frequencies of the vibration transmitted to the driver deviate from the key frequency values,which easily cause human discomfort.Thus,the design of the seat suspension system has no effect on the health condition of the driver after being vibrated.The findings also illustrate that the NSS suspension system has good vibration-isolation performance,and the driver's ride comfort is improved.
为了改善驾驶室座椅的隔振性能,提出了基于负刚度结构的工程机械驾驶室座椅悬架系统优化模型.通过设计座椅负刚度悬架结构(NSS),建立了负刚度非线性动力学方程,基于MATLAB对悬架系统的不同参数及其对动刚度的影响进行了分析,得到悬架系统最为理想的配置参数范围;同时提出了NSS优化模型,采用不同方法对振动传递特性进行了仿真分析.研究结果表明:优化后的座椅悬架系统的位移幅值与加速度幅值均明显减小,座椅垂直振动方向的四次功率振动剂量值与加权加速度均方根值分别下降了86%和87%,座椅有效振幅传递率和悬架系统振动传递率均下降,传递给驾驶员的振动的峰值频率均不在容易引起人体不适的关键频率值附近.这表明座椅悬架系统的设计对驾驶员受振后的身体健康状况没有任何影响,NSS悬架系统具有良好的隔振性能,提高了驾驶员的乘坐舒适度.
基金
The National Natural Science Foundation of China(No.11902207,No.52072072)
the Natural Science Foundation of Hebei Province(A2020210018)
Higher Education Teaching Research Project(No.Y2020-15).