期刊文献+

Development of a modular, biocompatible thiolated gelatin microparticle platform for drug delivery and tissue engineering applications 被引量:2

原文传递
导出
摘要 The field of biomaterials has advanced significantly in the past decade.With the growing need for high-throughput manufacturing and screening,the need for modular materials that enable streamlined fabrication and analysis of tissue engineering and drug delivery schema has emerged.Microparticles are a powerful platform that have demonstrated promise in enabling these technologies without the need to modify a bulk scaffold.This building block paradigm of using microparticles within larger scaffolds to control cell ratios,growth factors and drug release holds promise.Gelatin microparticles(GMPs)are a well-established platform for cell,drug and growth factor delivery.One of the challenges in using GMPs though is the limited ability to modify the gelatin post-fabrication.In the present work,we hypothesized that by thiolating gelatin before microparticle formation,a versatile platform would be created that preserves the cytocompatibility of gelatin,while enabling post-fabrication modification.The thiols were not found to significantly impact the physicochemical properties of the microparticles.Moreover,the thiolated GMPs were demonstrated to be a biocompatible and robust platform for mesenchymal stem cell attachment.Additionally,the thiolated particles were able to be covalently modified with a maleimide-bearing fluorescent dye and a peptide,demonstrating their promise as a modular platform for tissue engineering and drug delivery applications.
出处 《Regenerative Biomaterials》 SCIE 2021年第3期45-56,共12页 再生生物材料(英文版)
基金 This work was supported by the National Institutes of Health(R01 AR068073 and P41 EB023833) H.A.P.,M.M.S.and E.Y.J.acknowledge support from the National Science Foundation Graduate Research Fellowship Program.M.M.S.also acknowledges support from the Ford Doctoral Fellowship Program.E.W.received support from Ruth L.Kirschstein Fellowship and the National Institute of Dental and Craniofacial Research(F31 DE027586).
  • 相关文献

同被引文献14

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部