期刊文献+

基于AOD-Net的交通道路图像大气能见度检测系统 被引量:1

Traffic Road Image Atmospheric Visibility Detection System Based on AOD-NET
下载PDF
导出
摘要 针对目前应用较为广泛的传统交通道路大气能见度检测设备价格昂贵、未能满足覆盖大面积路网等问题,基于AOD-Net及道路监控设备,提出一种新型能见度检测系统。系统采用AOD-Net对道路图像信息进行处理,并通过算法构建模型给出相对准确的大气能见度数据。采用PyQt创建GUI程序平台,方便用户使用图像资料完成对交通道路大气能见度的检测。 Aiming at the problems of high price of traditional road atmospheric visibility detection equipment,which is widely used at present,and can not cover a large area of road network,a new visibility detection system is proposed based on AOD net and road monitoring equipment.The system uses AOD net to process the road image information,and constructs the model through the algo⁃rithm to give the relatively accurate atmospheric visibility data.Pyqt is used to create GUI program platform,which is convenient for users to use image data to complete the detection of atmospheric visibility on traffic roads.
作者 陈勇 王绎凯 王振宇 CHEN Yong;WANG Yi-kai;WANG Zhen-yu(Nanchang Institute of Technology,Nanchang 330099,China)
机构地区 南昌工程学院
出处 《电脑知识与技术》 2021年第18期199-200,共2页 Computer Knowledge and Technology
基金 2019年国家大学生创新创业训练计划资助项目(2019047)。
关键词 能见度检测 深度学习 AOD-Net PyQt 图像识别 交通管理 visibility detection deep learning AOD-Net PyQt image recognition traffic control
  • 相关文献

参考文献5

二级参考文献61

  • 1郭凡,陈启美,李勃.基于云台摄像的实时车速检测算法[J].计算机辅助设计与图形学学报,2006,18(9):1337-1344. 被引量:7
  • 2HAUTIERE N, AUBERT D, DUMONT E, et al. Experimental val- idation of dedicated methods to in-vehicle estimation of atmospheric visibility distance [ J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(10) : 2218 -2225.
  • 3HUANG S-C, CHEN B-It, WANG W-J. Visibility restoration of single hazy images captured in real-world weather conditions [ J]. IEEE Transactions on Circuits and Systems for Video Teehnology, 2014, 24(10) : 1814 - 1824.
  • 4SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Instant de- hazing of image using polarization [ C]// CVPR 2001: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vi,,ion and Pattern Recognition. Washington, DC: IEEE Computer Socie- ty, 2001, 1:325-332.
  • 5NARASIMHAN S G, NAYAR S K. Chromatic framework for vision in bad weather [ C]// CVPR 2000: Proceedings of the 2000 IEEE Computer Society Conference on Computer Vision and Pattern Rec- ognition. Washington, DC: IEEE Computer Society, 2000, 1:598 -605.
  • 6HE K, SUN J, TANG X. Single image haze removal using dark chan- nel prior [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353.
  • 7NEGRU M, NEDEVSCHI S. Image based fog detection and visibili- ty estimation for driving assistance systems [ C]//ICCP 2013: Pro- ceedings of the 2013 IEEE International Conference on Intelligent Computer Communication and Processing. Piscataway: IEEE, 2013: 163-168.
  • 8POMERLEAU D. Visibility estimation from a moving vehicte using the RALPH vision system [ C]// ITSC 1997: Proceedings of the 1997 IEEE Conference on Intelligent Transportation System. Pisca- taway: IEEE, 1997: 906-911.
  • 9HAUTIERE N, TAREL J-P, LAVENANT, et al. Automatic fog de- tection and estimation of visibility distance through use of an onboard camera [J]. Machine Vision and Applications, 2006, 17( 1):8 -20.
  • 10LIU J, FENG D. Two-dimensional muhi-pixel anisotropic Gaussian filter for Edge-Line Segment (ELS) detection [ J]. Image and Vi- sion Computing, 2014, 32(1) : 37 -53.

共引文献29

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部