期刊文献+

基于生成对抗网络的行人异常行为图像去模糊算法研究 被引量:3

Deblurring algorithm based on pedestrian abnormal behavior generation countermeasure network
下载PDF
导出
摘要 为解决在行为异常检测中遇到的运动模糊问题,提出一种基于DeblurGAN改进的快速去运动模糊算法。使用3个3×3的卷积替换原生成器中的7×7的卷积,并舍弃原算法上采样时使用的转置卷积,对需要上采样的特征图进行双线性插值。将原算法生成器结构中的残差单元替换成密集残差块(RRDB),然后将得到的残差特征缩放到0∼1之间的值,避免训练不稳定。在原生成器的损失函数中添加梯度图像的L1损失,增加图像的边缘信息使重建后的图像边缘更明显,克服了DeblurGAN重建图像边缘细节不够清晰的缺陷。经实验验证,并和文献[14]、文献[18]进行比较,结果显示:优化后的模型与DeblurGAN相比,峰值信噪比提高0.94,结构相似度和速度相当,并解决了重建后图像棋盘格子的问题,细节边缘更加突出,模型性能优于相关算法。 To solve the problem of motion blur in abnormal behavior detection,a fast motion blur removal algorithm,based on DeblurGAN,is proposed.Three 3×3 convolutions are used to replace the 7×7 convolution in the original generator.The transposed convolution is discarded.Firstly,bilinear interpolation is used to expand the size of the feature map which needs upsampling.The residual unit is replaced by a residual density block(RRDB)in the original algorithm.The RRDB is then scaled to 0∼1 to avoid unstable training.The L1 loss of gradient images is added to the loss function of the original generator.As the DeblurGAN reconstructed image edge is often not clear enough,the edge information of the image is added to make the reconstructed image edge more obvious.The effectiveness of this method is verified by experiments and is compared with other similar algorithms like DeblurGAN.The PSNR of the optimized model is improved by 0.94.The structure similarity and speed are equivalent.The chessboard lattice problem in the reconstructed image is solved.The edge of detail is more prominent.The performance of the pro-posed model is better than that of other related algorithms.
作者 吉训生 滕彬 Ji Xunsheng;Teng Bin(School of Internet of Things Engineering,Jiangnan University,Wuxi,Jiangsu 214122,China)
出处 《光电工程》 CAS CSCD 北大核心 2021年第6期29-39,共11页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(61771223)。
关键词 生成对抗网络 运动模糊 密集残差块 图像重建 generate countermeasure network motion blur dense residual block image reconstruction
  • 相关文献

参考文献7

二级参考文献28

  • 1Gonzalez RC, Woods RE, Wrote; Ruan QQ, Ruan YZ, et al., Trans. Digital Image Processing. 2nd ed., Beijing: Publishing House of Electronics Industry, 2003. 1-220.
  • 2You Y, Kaveh M. A regularization approach to joint blur identification and image restoration. IEEE Trans. on Image Processing, 1996,5(3):416-428. [doi: 10.1109/83.491316].
  • 3Chan TF, Wong CK. Total variation blind deconvolution. IEEE Trans. on Image Processing, 1998,7(3):370-375. [doi: 10.1109/83. 661187].
  • 4Roth S, Black MJ. Fields of experts: A framework for learning image priors. In: Cordelia S, Stefano S, Carlo T, eds. Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. San Diego: The IEEE Computer Society, 2005. 860-867. [doi: 1O.1109/CVPR.2005.160].
  • 5Fergus R, Singh B, Hertzmann A, Roweis ST, Freeman WT. Removing camera shake from a single photograph. ACM Trans. on Graphics, 2006,25(3):787-794. [doi: 10.1145/1141911.1141956].
  • 6Shan Q, Jia J, Agarwala A. High-Quality motion deblurring from a single image. ACM Trans. on Graphics, 2008,27(3):Article 73. [doi: 10.114511399504.1360672].
  • 7Shao WZ, Wei ZH. Super-Resolution reconstruction based on generalized Huber-MRF image modeling. Ruan Jian Xue Baol Journal of Software, 2007,18(10):2434-2444 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/18/2434.htm [doi: 10. 1360/jos182434].
  • 8Gu YT, Wu EH. Image-Analogies based super resolution. Ruan Jian Xue Bao/Journal of Software, 2008,19(4):851-860 (in Chinese with English abstract). http://www.jos.org.cnlI000-9825/19/85I.htm [doi: 10.3724/SP.J.IOOI.2008.00851].
  • 9Cai JF, Ji H, Liu CQ, Shen ZW. Blind motion deblurring using multiple images. ELSEVIER Journal of Computational Physics, 2009,228(14):5057-5071. [doi: 10.1016/j.jcp.2009.04.022].
  • 10Almeida MSC, Almeida LB. Blind and semi-blind deblurring of natural images. IEEE Trans. on Image Processing, 2010,19(1): 36-52. [doi: 1O.1109/TIP.2009.2031231].

共引文献79

同被引文献28

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部