期刊文献+

纳米CoSe的合成及其在醚类电解液中的电化学性能

Synthesis of nano CoSe and electrochemical properties in ether electrolytes
下载PDF
导出
摘要 基于转化反应的硒化钴由于其层状结构和高的比容量而备受关注,然而有效抑制不可逆的Se溶解和在循环过程中严重的体积变化引起的快速容量衰减仍然是一个挑战.通过水热法合成纳米级CoSe材料,合适的纳米结构可以有效地改善电池的性能(钠离子电池在0.1 A/g电流密度下,进行100次循环后,具有413 mA·h/g的超高容量).与酯基电解液不同,选择的醚基电解液避免了酯基电解液和多硒化物反应消耗活性材料,进而引起容量衰减的问题,最终可以实现更稳定的循环周期(钠离子电池在2 A/g电流密度下,进行600次循环后,具有303 mA·h/g的超高容量). Cobalt selenide based on conversion reaction has attracted much attention due to its layered structure and high specific capacity.However,it is still a challenge to effectively suppress irreversible Se dissolution and rapid capacity decay caused by serious volume changes during the cycle.Here,the nano-scale CoSe material was synthesized by hydrothermal method and the proper nanostructures was found to effectively improve performance of the battery.The results show that the discharge specific capacity of sodium-ion battery stabilizes at 413 mA·h/g after 100 cycles under the current density of 0.1 A/g.Unlike ester-based electrolytes,the selected ether based electrolyte avoids the reaction between ester-based electrolyte and selenide,which consumes active materials and causes capacity decay.Finally,a more stable cycle can be achieved,and it shows that discharge specific capacity of sodium-ion batter stabilized at 303 mA·h/g after 600 cycles under the high current density of 2 A/g.
作者 屈超群 韩明芮 王博 屈姗姗 张浦桦 QU Chao-qun;HAN Ming-rui;WANG Bo;QU Shan-shan;ZHANG Pu-hua(College of Physics,Jilin Normal University,Siping 136000,China)
出处 《吉林师范大学学报(自然科学版)》 2021年第3期28-33,共6页 Journal of Jilin Normal University:Natural Science Edition
基金 国家自然科学基金项目(21905110)。
关键词 钠离子电池 负极材料 过渡金属硒化物 sodium ion battery anode material transition metal selenides
  • 相关文献

参考文献3

二级参考文献57

  • 1S. Megahed, B. Scrosati. Lithium-ion rechargeable batteries[ J]. Journal of Power Sources, 1994,51 (1-2) :79 - 104.
  • 2Y. Nishi. Lithium ion secondary batteries;past 10 years and the future [J].Journal of Power Sources,2001 , 100(1-2) : 101 - 106.
  • 3J. -M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithium batteries [J]. Nature,2011,414:359 - 367.
  • 4M. D. Slater, D. Kim, E. Lee, et al. Sodium-Ion Batteries[J].Advanced Functional Materials ,2013,23 ( 8 ) :947 - 958.
  • 5S.-W. Kim, D.-H. Seo, X. Ma, et al. Electrode Materials for Rechargeable Sodium-Ion Batteries:Potential Alternatives to Current Lithium-Ion Batteries [ J ]. Advanced Energy Materials ,2012,2 ( 7 ) :710 - 721.
  • 6M. Armand, J. -M. Tarascon. Building better batteries [ J ]. Nature,2008,451:652 - 657.
  • 7B. Scrosati. Recent advances in lithium ion battery materials [J]. Electrochimica Acta,2000,45 (15-16 ) :2461 -2466.
  • 8M. R. Palacin. Recent advances in rechargeable battery materials : a chemist' s perspective[ J]. Chem. Soc. Rev. ,2009,38 (9) :2565 -2575.
  • 9C. Delmas ,C. Fouassier,P. Hagenmuller. Structural Classification and Properties of the Layered Oxides [ J ]. Physica B + C,1980,99 (1-4) :81 - 85.
  • 10J. J. Ding, Y. N. Zhou, Q. Sun, et al. Electrochemical properties of P2-phase Nao. 74 CO2 compounds as cathode material for rechargeable sodium- ion batteries[ J]. Eleetrnchimica Aeta ,2013,87:388 - 393.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部