摘要
为了精准、高效获得富水砂层渣土改良试验效果,以渗透系数、内摩擦角(改良前)、电阻率、泡沫剂浓度和膨润土浓度为输入变量,坍落度、渗透系数、内摩擦角(改良后)为输出变量,并基于24组富水砂层渣土改良数据,建立相关向量机(relevance vector machine,RVM)预测模型,将预测结果与反向传播(back propagation,BP)神经网络模型进行对比分析。结果表明:RVM模型在预测坍落度、渗透系数和内摩擦角时的平均误差分别为0.73%、0.38%和2.24%,优于BP神经网络模型的1.76%、4.53%和3.60%;通过计算皮尔逊相关系数,可知RVM预测值与实测值对应坍落度、渗透系数、内摩擦角的相关系数r分别为0.9999、0.9993和0.9878,说明拟合程度极高。由此可见,RVM模型具有预测精度高、可靠性高的优点,为富水砂层渣土改良试验效果的预测提供一种新方法。
In order to accurately and efficiently obtain the effect of the water-rich sand layer residue improvement test,permeability,internal friction angle(before modification),resistivity,foam agent concentration and bentonite concentration were used as input variables,and slump,permeability and internal friction angle(after modification)were used as output variables,a relevance vector machine(RVM)prediction model was developed based on 24 sets of water-rich sand layer residue improvement data.The prediction results and the BP neural network model were analyzed.The results show that the average errors of the RVM model in predicting slump,permeability coefficient and internal friction angle are 0.73%,0.38%and 2.24%,respectively,which are superior to 1.76%,4.53%and 3.60%of the BP neural network model.The RVM predicted and measured values corresponding to slump,permeability coefficient,and internal friction angle were calculated by Pearson correlation coefficient,and the known correlation coefficients r are 0.9999,0.9993,and 0.9878,respectively,indicating that the fitting degree is extremely high.Therefore,the RVM model features the merits of high precision and high reliability,and provides a new method for predicting the effect of water-rich sand layer residue improvement test.
作者
张研
梁卓悦
廖逸夫
ZHANG Yan;LIANG Zhuo-yue;LIAO Yi-fu(Guangxi Key Laboratory of Geomechanics and Engineering,Guilin University of Technology,Guilin 541004,China;College of Civil and Architectural Engineering,Guilin University of Technology,Guilin 541004,China)
出处
《科学技术与工程》
北大核心
2021年第17期7293-7298,共6页
Science Technology and Engineering
基金
国家自然科学基金(52068016)
广西高等学校高水平创新团队及卓越学者计划(2020)
广西自然科学基金(2020GXNSFAA159125,2020GXNSFAA297118)
广西岩土力学与工程重点实验室(桂科能19-Y-21-9)。
关键词
富水砂层
相关向量机模型
相关系数
预测
water-rich sand layer
relevance vector machine model
correlation coefficient
prediction