期刊文献+

面向智慧化的重载铁路发展研究 被引量:9

Research on the development of intelligent heavy-haul railway
下载PDF
导出
摘要 云计算、物联网、人工智能、大数据等新一代信息科学技术的高速发展,推动着各行各界的智能化转型,重载铁路运输的未来发展方向也将转向智慧化.结合美国、澳大利亚、南非及巴西4个国家重载铁路相关技术的发展概况,对国际重载铁路技术的发展现状进行总结,进而分析重载铁路在运输组织、设备维修、运营安全及客户服务方面的特点及其智慧化需求.最后明确重载铁路智慧化发展的内涵,阐述重载铁路智能检测、智能运维、智能安防、智能控制、智能调度5个智慧化发展方向,为重载铁路智慧化发展提供参考. The new generation of information science and technology,such as cloud computing,Internet of Things,artificial intelligence and big data,is developing rapidly,which promotes the intelligent transformation of all walks of life.Intellectualization will become one of the development directions of heavy-haul railway transportation in the future.This paper presents the development status of heavy-haul railway technology in the United States,Australia,South Africa and Brazil,summarizes the current status of international heavy-haul railway technology development,and then analyzes the characteristics of heavy-haul railways in transportation organization,equipment maintenance,operation safety and customer service,and expounds their smart needs.Finally,the connotation of the intelligent development of heavy-haul railways is clarified,and the five intelligent development directions of intelligent detection,intelligent operation and maintenance,intelligent security,intelligent control,and intelligent dispatching of heavy-haul railways are explained,which can provide a certain reference for the intelligent development of heavy-haul railways.
作者 朱雨 石利刚 王健慧 ZHU Yu;SHI Ligang;WANG Jianhui(School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 611756,China;Transportation Department,China Railway Taiyuan Group Co,Ltd,Taiyuan 030013,China;Institute of Science and Technology,Daqin Railway Co,Ltd,Taiyuan 030013,China)
出处 《交通科技与经济》 2021年第4期59-64,共6页 Technology & Economy in Areas of Communications
基金 中国国家铁路集团有限公司科技研究开发计划重大项目(P2018X003) 中国铁路太原局集团有限公司科技研究开发计划项目(A2019Y04)。
关键词 重载铁路 智慧化 人工智能 智能运维 智能调度 heavy-haul railway intellectual artificial intelligence intelligent operation and maintenance intelligent scheduling
  • 相关文献

二级参考文献77

共引文献146

同被引文献73

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部