期刊文献+

深度学习用于无人机影像树种识别研究进展 被引量:2

Progress on Tree Species Identification from Unmanned Aerial Vehicles
下载PDF
导出
摘要 提高遥感数据质量和利用新的图像处理方法是提高遥感图像识别精度两个主要方向.树种识别是林业遥感领域国际性关注的学术问题,深度学习方法用于无人机影像树种识别初见端倪.介绍无人机类型、外业飞行参数,在总结无人机高光谱影像树种识别现状以及传统机器学习方法在无人机树种识别的基础上,分析卷积神经网络与迁移学习方法在无人机树种识别的国内外研究现状.研究指出无人机树种识别数据集构建与共享迫在眉睫;逐步建立卷积神经网络在无人机树种识别的标准与规范;采用并行计算方式,加速卷积神经网络训练时间;拓展无人机森林资源调查因子提取,进行森林健康实时监测,从而改进和完善我国森林资源监测体系. There are two ways to improve classification accuracy of remote sensing image recognition. One is to improve the quality of remote sensing data, the other is to adopt new image processing methods. Tree species identification is an international academic issue in the field of forestry remote sensing. It is the beginning to identify tree species from UAV images by deep learning. Firstly, the UAV type and parameter design of field flight were briefly introduced. Then, cutten status of tree species recognition in UAV hyperspectral images and the traditional machine learning methods used in UAV tree species recognition were summarized. Furthermore, the research status of convolution neural network and transfer learning method applied in UAV tree species recognition was analyzed. The research further points out that it is urgent to construct and share UAV tree species identification data set. It is necessary to establish the standards and norms of convolutional neural network in UAV tree species identification. To improve China’s forest resources monitoring system, more forest resources investigation factors were extracted from UAV and parallel computing will be adopted to accelerate the training time of convolutional neural network for real-time monitoring.
作者 罗仙仙 许松芽 严洪 肖美龙 陈正超 LUO Xianxian;XU Songya;YAN Hong;XIAO Meilong;CHEN Zhengchao(School of Mathematics and Computer Science,Quanzhou Normal University,Quanzhou Fujian 362000,China;Fujian Provincial Key Laboratory of Data Intensive Computing,Quanzhou Fujian 362000,China;Faculty of Educational Science,Quanzhou Normal University,Quanzhou Fujian 362000,China;Fujian Forest Inventory and Planning Institute,Fuzhou Fujian 350000,China;Forest Resource Station,Quanzhou Forestry Bureau,Quanzhou Fujian 362000,China;Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China)
出处 《泉州师范学院学报》 2021年第2期65-70,共6页 Journal of Quanzhou Normal University
基金 福建省自然科学基金项目(2020J01785) 国家重点研发计划课题(2016YFB0500304)。
关键词 无人机 树种识别 深度学习 unmanned aerial vehicles tree species identification deep learning
  • 相关文献

参考文献14

二级参考文献211

  • 1刘秀英,林辉,熊建利,熊育久,孙华,莫登奎.森林树种高光谱波段的选择[J].遥感信息,2005,27(4):41-44. 被引量:37
  • 2余新晓,鲁绍伟,靳芳,陈丽华,饶良懿,陆贵巧.中国森林生态系统服务功能价值评估[J].生态学报,2005,25(8):2096-2102. 被引量:384
  • 3WANG Dai-lin ZHANG Xiu-mei LIU Ya-qiu.Recognition system of leaf images based on neuronal network[J].Journal of Forestry Research,2006,17(3):243-246. 被引量:5
  • 4梁淑敏,杨锦忠.图像处理技术在玉米株型上的应用研究[J].玉米科学,2007,15(4):146-148. 被引量:12
  • 5戴方兴,舒嵘,王斌永,何志平,孙凡.无人机载多光谱成像仪图像配准的一种方法[J].红外技术,2007,29(8):466-467. 被引量:1
  • 6Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 7Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 8Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 9Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 10Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].

共引文献745

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部