期刊文献+

Kaup-Boussinesq方程的留数对称和相互作用解

Residual Symmetries and Interaction Solutionsof the Kaup-Boussinesq Equations
下载PDF
导出
摘要 研究了Kaup-Boussinesq(KB)方程的留数对称和相互作用解.首先,通过Painlevé截断展开得到KB方程的留数对称,并将其留数对称局域化;其次,运用相容Riccati展开法,证明了该方程是相容Riccati展开可解的;最后,通过求解相容性方程,并且借助雅可比椭圆函数构造了孤立波与椭圆周期波的相互作用解. In this paper,the residual symmetry and interaction solution of the Kaup-Boussinesq equations are studied.First,the truncated Painlevémethod is developed to obtain the residual symmetry of the Kaup-Boussinesq equations.Then,the Kaup-Boussinesq equations are proved to be consistent Riccati expansion(CRE)solvable.Finally,with the help of the Jacobian elliptic functions,the interaction solutions of solitary wave and elliptic periodic wave are obtained through solving the consistency equation.
作者 呼星汝 HU Xing-ru(School of Mathematics,Northwest University,Xi'an 710127,China)
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第7期97-104,共8页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金项目(11775047).
关键词 Kaup-Boussinesq方程 留数对称 CRE可解 相互作用解 Kaup-Boussinesq equation residual symmetry consistent Riccatiexpansion(CRE)solvability interaction solution
  • 相关文献

参考文献4

二级参考文献75

  • 1Naz R, Mahomed F M, Mason D P. Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics[J]. Appl Math comput, 2008 ( 205 ): 212-230.
  • 2G/Sktas 0, Hereman W. Symbolic computation of conserved densities for systems of nonlinear evolution equations[J]. J Symb Comput, 1997 (24): 591-621.
  • 3Hereman W, Adams P J, Eklund H L, et al. Direct Methods and Symbolic Software for Conservation Laws of Nonlinear Equations[C]// Yan Z. Advances of Nonlinear Waves and Symbolic Computation. New York: Nova Science Publishers, 2009:19-79.
  • 4Hereman W, Colagrosso M, Sayers R, et al. Continuous and Discrete Homotopy Operators and the Computation of Conservation Laws[C]//Wang D, Zheng Z. Differential Equations with Symbolic Computation. Basel: Birkh auser Verlag, 2005: 249-285.
  • 5HeremanW, Deconinck B, Poole L D. Continuous and discrete homotopy operators: A theoretical approach made concrete[J]. Math ComputSimul, 2007, 74 (4-5): 352-360.
  • 6Kaup D J. Finding eigenvalue problems for solving nonlinear evolution equations[J]. Progr Theoret Phys, 1975 ( 54 ): 72-78.
  • 7Guha P. Geodesic flow on extended bott-virasoro group and generalized two-compenent peakon type dual systems[J]. Rev Math Phys, 2008 (20): 1191-1200.
  • 8Smimov A O. Real finite gap regular solutions of the Kanp-Boussinesq equation[J]. Theoret Math Phys, 1986 ( 66 ): 19-31.
  • 9Borisov A B, Parlor M P, Zykov S A. Proliferation scheme for Kaup-Boussinesq system[J]. Physica D, 2001 ( 152/153 ): 104-109.
  • 10Zhou Jiangbo, Tian Lixin, Fan Xinghua. Solitary-wave solutions to a dual equation of the Kaup-Boussinesq system[J]. Nonlinear Analysis: Real World Applications, 2010, 11 ( 4 ) : 3229-3235.

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部