期刊文献+

一种改进Elman神经网络的电离层TEC预报方法 被引量:4

A prediction model of ionospheric TEC based on improved Elman neural network
下载PDF
导出
摘要 为了建立更高精度的电离层TEC预报模型,利用IGS数据中心提供的平静期与磁暴期电离层TEC原始序列,提出基于奇异谱分析法(SSA)与Elman神经网络结合的电离层TEC预报模型。实验结果表明,在电离层平静期TEC的预报精度上,SSA-Elman组合模型的精度更加稳定,预测残差值在2 TECu以内;在电离层磁暴期TEC的预报上,SSA-Elman组合模型较单一Elman模型的预测精度有显著提升,预测值残差在3~4 TECu以内。通过对比分析,文中提出的组合模型方法有助于电离层TEC预报精度的提升。 This paper,in order to establish a more accurate ionospheric TEC prediction model,uses the ionospheric TEC data during the quiet period and the magnetic storm period provided by IGS Center,and proposes an ionospheric TEC prediction model based on singular spectrum analysis(SSA)and Elman neural network.The result shows that the accuracy of the SSA-Elman combined model is more stable in the prediction of TEC during the quiet period,and the residual error is less than 2 TECu;the prediction precision of SSA-Elman combined model is much higher than that of single Elman model during the storm time,and the residual precision of prediction value is less than 3-4 TECu.By comparison and analysis,the combined model method proposed in this paper is helpful to improve the forecast accuracy of ionospheric TEC.
作者 周强波 ZHOU Qiangbo(Changsha Uranium Geology Research Institute, CNNC, Changsha 410007, China)
出处 《测绘工程》 CSCD 2021年第4期9-13,共5页 Engineering of Surveying and Mapping
基金 国家自然科学基金资助项目(41761089) 中国核工业地质局铀矿地质项目(201917,201930-1,202028-1,202021-1)。
关键词 奇异谱分析 ELMAN神经网络 电离层TEC 预报精度 singular spectrum analysis Elman neural network ionospheric TEC prediction accuracy
  • 相关文献

参考文献13

二级参考文献164

共引文献212

同被引文献52

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部