期刊文献+

非线性二阶离散周期边值问题的Ambrosetti-Prodi型结果

AMBROSETTI-PRODI TYPE RESULTS FOR NONLINEAR SECOND-ORDER DISCRETE PERIODIC BOUNDARY VALUE PROBLEMS
下载PDF
导出
摘要 本文研究了二阶离散周期边值问题{△^(2)u(t-1)+f(t,u(t),△u(t-1))=s,t∈[1,T]z,u(0)-u(T)=△u(0)-△u(T)=0解的个数与参数s的关系,其中f(t,u,v):[1,T]Z×R^(2)→R关于(u,v)∈R^(2)连续,s∈R.利用上下解方法和拓扑度理论,获得了Ambrosetti-Prodi型结果,推广了已有文献的相关结果. In this paper,we discuss the relationship between the number of the solutions for second-order discrete periodic boundary value problem {△^(2)u(t-1)+f(t,u(t),△u(t-1))=s,t∈[1,T]z,u(0)-u(T)=△u(0)-△u(T)=0 and the parameter s,where f(t,u,v):[1,T]Z×R^(2)→R is continuous with respect to(u,v)∈R^(2),s∈R.By using the method of the upper and lower solutions and topological degree techniques,Ambrosetti-Prodi type result is obtained,and some related conclusions on this topic are general-ized.
作者 赵娇 ZHAO Jiao(College of Mathematics and Statistics,Northwest Normal University,Gansu Lanzhou 730070,China)
出处 《数学杂志》 2021年第4期357-364,共8页 Journal of Mathematics
基金 国家自然科学基金资助(12061064),西北师范大学研究生科研资助(2020KYZZ001109).
关键词 二阶周期边值问题 Ambrosetti-Prodi型结果 上下解方法 拓扑度理论 second-order periodic BVPs Ambrosetti-Prodi type results upper and lower solutions topological degree techniques
  • 相关文献

参考文献1

二级参考文献11

  • 1AMBROSETTI A, PRODI G. On the inversion of some differentiable mappings with singularities between Banach spaces [ J]. Ann Mat Pura Appl, 1972, 93:231-247.
  • 2FABRY C, MAWHIN J, NKASHAMA M N. A multiplicity result for periodic solutions of forced nonlinear second order ordi- nary differential equations[J]. Bull London Math Soc, 1986, 18(2) :173-180.
  • 3RACHUNKOVA I. Multiplicity results for four-point boundary value problems[ J]. Nonlinear Analysis, 1992, 18:497-505.
  • 4BEREANU C, MAWHIN J. Existence and multiplicity results for periodic solutions of nonlinear difference equations [ J ]. Journal of Difference Equations and Applications, 2006, 12:677-695.
  • 5BEREANU C, MAWHIN J. Existence and multiplicity results for some nonlinear problems with singular 4)-Laplacian [ J ]. J Differential Equations, 2007, 243:536-557.
  • 6GAO Chenghua. On the linear and nonlinear discrete second-order Neumann boundary value problems [J ]. Applied Mathemat- ics and Computation, 2014, 233:62-71.
  • 7HUI Xing, CHEN Hongbin, HE Xibing. Exact multiplicity and stability of solutions of second-order Neumann boundary value problem [J ]. Applied Mathematics and Computation, 2014, 232 : 1104-1111.
  • 8CABADA A. A positive operator approach to the Neumann problem for a second-order ordinary differential equation [ J]. J Math Anal Appl, 1996, 204:774-785.
  • 9SUN Jianping, LI Wantong. Multiple positive solutions to second-order Neumann boundary value problems [ J]. Applied Math- ematics and Computation, 2003, 146 : 187-194.
  • 10MANASEVICH R, MAWHIN J. Boundary value problems for nonlinear perturbations of vector p-Laplacian-like operators [ J]. J Korean Math Soc, 2000, 37:665-685.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部