摘要
本文研究了二阶离散周期边值问题{△^(2)u(t-1)+f(t,u(t),△u(t-1))=s,t∈[1,T]z,u(0)-u(T)=△u(0)-△u(T)=0解的个数与参数s的关系,其中f(t,u,v):[1,T]Z×R^(2)→R关于(u,v)∈R^(2)连续,s∈R.利用上下解方法和拓扑度理论,获得了Ambrosetti-Prodi型结果,推广了已有文献的相关结果.
In this paper,we discuss the relationship between the number of the solutions for second-order discrete periodic boundary value problem {△^(2)u(t-1)+f(t,u(t),△u(t-1))=s,t∈[1,T]z,u(0)-u(T)=△u(0)-△u(T)=0 and the parameter s,where f(t,u,v):[1,T]Z×R^(2)→R is continuous with respect to(u,v)∈R^(2),s∈R.By using the method of the upper and lower solutions and topological degree techniques,Ambrosetti-Prodi type result is obtained,and some related conclusions on this topic are general-ized.
作者
赵娇
ZHAO Jiao(College of Mathematics and Statistics,Northwest Normal University,Gansu Lanzhou 730070,China)
出处
《数学杂志》
2021年第4期357-364,共8页
Journal of Mathematics
基金
国家自然科学基金资助(12061064),西北师范大学研究生科研资助(2020KYZZ001109).