期刊文献+

多模态的情感分析技术综述 被引量:33

Summary of Multi-modal Sentiment Analysis Technology
下载PDF
导出
摘要 情感分析是指利用计算机自动分析确定人们所要表达的情感,其在人机交互和刑侦破案等领域都能发挥重大作用。深度学习和传统特征提取算法的进步为利用多种模态进行情感分析提供了条件。结合多种模态进行情感分析可以弥补单模态情感分析的不稳定性以及局限性等缺点,能够有效提高准确度。近年来,研究者多用面部表情信息、文本信息以及语音信息三种模态进行情感分析。主要从这三种模态对多模态情感分析技术进行综述:首先对多模态情感分析的基本概念以及研究现状进行简要介绍;其次总结了常用的多模态情感分析数据集;然后分别对现有的基于面部表情信息、文本信息和语音信息的单模态情感分析技术进行简要叙述;接下来详细介绍了模态融合技术,并依据不同的模态融合方式对多模态情感分析技术的现有成果进行重点描述;最后讨论了多模态情感分析存在的问题以及未来的发展方向。 Sentiment analysis refers to the use of computers to automatically analyze and determine the emotions that people want to express.It can play a significant role in human-computer interaction and criminal investigation and solving cases.The advancement of deep learning and traditional feature extraction algorithms provides conditions for the use of multiple modalities for sentiment analysis.Combining multiple modalities for sentiment analysis can make up for the instability and limitations of single-modal sentiment analysis,and can effectively improve accuracy In recent years,researchers have used three modalities of facial expression information,text information,and voice information to perform sentiment analysis.This paper mainly summarizes the multi-modal sentiment analysis technology from these three modalities.Firstly,it briefly introduces the basic concepts and research status of multimodal sentiment analysis.Secondly,it summarizes the commonly used multi-modal sentiment analysis datasets.It gives a brief description of the existing single-modal emotion analysis technology based on facial expression information,text information and voice information.Next,the modal fusion technology is introduced in detail,and the existing results of the multi-modal sentiment analysis technology are mainly described according to different modal fusion methods.Finally,it discusses the problems of multi-modal sentiment analysis and future development direction.
作者 刘继明 张培翔 刘颖 张伟东 房杰 LIU Jiming;ZHANG Peixiang;LIU Ying;ZHANG Weidong;FANG Jie(School of Communications and Information Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;Center for Image and Information Processing,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;International Joint Research Center for Wireless Communication and Information Processing Technology of Shaanxi Province,Xi'an 710121,China;Key Laboratory of Electronic Information Application Technology for Crime Scene Investigation,Ministry of Public Security,Xi'an University of Posts and Telecommunications,Xi'an 710121,China)
出处 《计算机科学与探索》 CSCD 北大核心 2021年第7期1165-1182,共18页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金青年基金项目(61801381)。
关键词 多模态 情感分析 模态融合 multi-modal sentiment analysis modal fusion
  • 相关文献

参考文献13

二级参考文献62

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2姚天昉,娄德成.汉语语句主题语义倾向分析方法的研究[J].中文信息学报,2007,21(5):73-79. 被引量:78
  • 3BALAHUR A, STEINBERGER R, KABADJOV M, et al. Sentiment analysis in the news[ J]. Infrared Physics and Technology, 2014, 65:94-102.
  • 4JIANG Long, YU Mo, ZHOU Ming, et al. Target-dependent twitter sentiment classification[ C ]//Proc of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Techno- logies . 2011.
  • 5王金刚,于潇,宋丹丹,等.基于中文bag-of-opinions方法的微博情感分析[C]//NLP&CC.2012.
  • 6PAK A, PAROUBEK P. Twitter as a corpus for sentiment analysis and opinion mining [ C ]//Proc of International Conference on Lan- guage Resources and Evaluation. 2010.
  • 7TABOADA M, BROOKE J, TOFILOSKI M, et al. Lexicon-based methods for sentiment analysis [ J ]. Computational Linguistics, 2011, 37(2) : 267-307.
  • 8LUCIANO B, FENG Jun-lan. Robust sentiment detection on twitter from biased and noisy data[ C]//Proc of the 23rd International Con- ference on Computational Linguistics. 2010.
  • 9PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? Sentiment classification using machine learning techniques [ C ]//Proc of Confe- rence on Empirical Methods in Natural Language Processing. 2002: 79- 86.
  • 10CUI Hang, MITYAL V, DATAR M. Comparative experiments on senti- ment classification for online product reviews [ C ]//Proc of the 21st National Conference on Artificial Intelligence. 2006: 1265-1270.

共引文献825

同被引文献236

引证文献33

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部