摘要
通过三维粒子重构获取粒子场的分布情况是层析粒子图像测速的关键步骤,有限二维投影下的三维粒子重构是一个欠定的反问题,其精确解往往很难得到。一般情况下,可以通过优化方法得到近似解。为了获取质量更高的粒子场并用于层析粒子图像测速,提出了一种基于卷积神经网络(Convolutional Neural Networks,CNN)的粒子重构方法。所提出的技术可以从基于传统的代数重构技术(Algebraic Reconstruction Technique,ART)的方法所得到的粗略粒子分布中进一步提高粒子重构质量。与现有的基于ART的算法相比,新技术在重构质量方面有了显著的改进,可以有效剔除虚假粒子并更准确地还原粒子形状,并且在粒子浓度较稠密的情况下计算速度至少快了一个数量级。
Three-dimensional particle reconstruction with limited two-dimensional projections is an underdetermined inverse problem that the exact solution is often difficult to be obtained.In general,approximate solutions can be obtained by optimization methods.In order to obtain a better quality particle field for Tomographic PIV,in the current work,a practical particle reconstruction method based on convolutional neural network(CNN)is proposed.The proposed technique can refine the particle reconstruction from a very coarse initial guess of particle distribution from any traditional algebraic reconstruction technique(ART)based methods.Compared with available ART-based algorithms,the novel technique makes significant improvements in terms of reconstruction quality.It can effectively eliminate ghost particles and restore the shape of particles more accurately,and is at least an order of magnitude faster withdense particle concentration.
作者
朱浩然
高琪
王洪平
廖相巍
赵亮
魏润杰
王晋军
ZHU Haoran;GAO Qi;WANG Hongping;LIAO Xiangwei;ZHAO Liang;WEI Runjie;WANG Jinjun(School of Aeronautics and Astronautics,Zhejiang University,Hangzhou 310027,China;Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China;Metallurgical Technology Research Institute,Iron and Steel Research Institute,Anshan iron and steel group,Anshan Liaoning 114009,China;State Key Laboratory of Metal Material for Marine Equipment and Application,Anshan Liaoning 114009,China;MicroVec.Inc.,Beijing 100083,China;Key Laboratory of Fluid Mechanics Ministry of Education,Beihang University,Beijing 100191,China)
出处
《实验流体力学》
CAS
CSCD
北大核心
2021年第3期88-93,共6页
Journal of Experiments in Fluid Mechanics
基金
国家自然科学基金面上项目(91852204)
海洋装备用金属材料及其应用国家重点实验室开放基金课题(SKLMEA-K201910)
国家重点研发计划资助(2020YFA0405700)。
关键词
机器学习
粒子重构
层析粒子图像测速
卷积神经网络
重构质量
machine learning
particle reconstruction
Tomographic PIV
convolutional neuralnetwork
refactoring quality