期刊文献+

胸腔X射线影像数据库--MIMIC-CXR数据探索 被引量:3

Thoracic X-ray Image Database-MIMIC-CXR Data Exploration
下载PDF
导出
摘要 临床医生诊断、检查患者病症常需借助超声、X射线、CT、MRI等医学成像技术手段,但查阅医学影像需要专业的知识基础,且阅片任务重,重复性高。随着计算机视觉技术的不断发展和进步,医学图像的自动分析已成为人工智能技术辅助医生诊断、治疗患者的主要方式之一。本文将介绍一个可促进医疗智能化技术发展的大型胸部X射线影像数据库——MIMIC-CXR。该数据库收集了2011~2016年间贝斯以色列女执事医疗中心急诊科的65379例患者的227835项影像学研究,同时包含了针对每项研究的放射学文本报告。本文旨在介绍MIMIC-CXR影像数据库的基本数据内容,以及其转化的MIMIC-CXR-JPG数据库的主要结构,同时探索将深度学习技术应用于MIMIC-CXR影像可能的研究方式。 Clinicians often use ultrasound,X-ray,CT,MRI,and other medical imaging techniques to diagnose and check patient symptoms.However,reading such medical images requires specialized knowledge,and the reading task is heavy and repetitive.With the continuous development and progress of computer vision technology,automatic analysis of medical images has become one of the main methods for artificial intelligence technology to assist doctors in diagnosing and treating patients.This article introduces a large chest X-ray image database MIMIC-CXR,which can promote the development of such technologies.The database collected 227,835 imaging studies of 65,379 patients in the emergency department of Beth Israel Deaconess Medical Center from 2011 to 2016,and included radiology text reports for each study.This article aims to introduce the basic data content of MIMIC-CXR image database and the main structure of the converted MIMIC-CXR-JPG database,and explore possible research methods of applying deep learning technology to MIMIC-CXR images.
作者 李莉 黄韬 王新宇 冯敖梓 吕军 Li Li;Huang Tao;Wang Xinyu;Feng Aozi;Lyu Jun(Department of Clinical Research,The First Affiliated Hospital of Jinan University,Guangzhou,510630,People's Republic of China;不详)
出处 《中国循证心血管医学杂志》 2021年第6期653-656,660,共5页 Chinese Journal of Evidence-Based Cardiovascular Medicine
基金 国家社会科学基金一般项目(16BGL183)。
关键词 MIMIC-CXR X射线 医学影像 数据库 MIMIC-CXR X-ray Medical imaging Data
  • 相关文献

参考文献6

二级参考文献19

  • 1王勇,吕扬生.基于纹理特征的超声医学图像检索[J].天津大学学报(自然科学与工程技术版),2005,38(1):57-60. 被引量:10
  • 2Henning Muller, Nicolas Michoux, et al. A Review of Con- tent- based Image Retrieval Systems in Medical Applica- tion--clinicaJ benefits and future directions [ J ]. Interna- tional Journal of Medical Informaties, 2004, 73 (1) : 1 - 23.
  • 3Qian x, Tagare H D. Optimal Embedding for Shape Inde- xing in Medical Image Databases [ J]. Medical Image Com- puting and Computer - Assisted Intervention ( MICCAI), 2005, (3750) : 377 -384.
  • 4Lira J, Chevalier J. VisMed: a visual vocabulary approach for medical image indexing and retrieval [ J ]. In Second Asia In- formation Retrieval Symposium, 2005, (3689) : 84 - 96.
  • 5Hsu W, Long LR, Antani S. SPIRS: a framework for con- tent- based image retrieval from large biomedical databases [ J]. Studies in Health Technology and Informatics, 2007, (129) : 188 -192.
  • 6Sharmila G, Saraswathi D, Ramkumar R. A Suevey on Con- tent based Medical Image Retrieval for Mri Brain Images [ J ]. International Journal of Research in Engineering and Technology, 2014, 3 (19): 149-154.
  • 7Chia - Hung Wei, Chang - Tsun Li and Roland Wilson. A Content- Based Approach to Medical Image Database Re- trieval [ C]. Database Technologies : Concepts, Methodolo- gies, Tools, and Applications, 2009 : 1062 - 1083.
  • 8Abdol Hamid Pilevar. CBMIR: Content -based Image Re- trieval Algorithm for Medical Image Databases [ EB/OL ]. [ 2015-01-10 ]. http: //www. ncbi. nlm. nih. gov/pmc/arti- cles/PMC3317765/.
  • 9Alex Krizhevsky and Sutskever, Ilya and Geoffrey E. Hin- ton, ImageNet Classification with Deep Convolutional Neural Networks [ J ]. Advances in Neural Information Processing Systems, 2012, (25) : 1097 - 1105.
  • 10江少锋,陈武凡,冯前进,杨素华.基于模糊区域的CT脑图像检索及关联反馈[J].计算机工程与应用,2008,44(5):199-202. 被引量:4

共引文献72

同被引文献27

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部