期刊文献+

基于DPU的低功耗嵌入式手势识别系统设计 被引量:2

Design of low power embedded gesture recognition system design based on DPU
下载PDF
导出
摘要 为了解决嵌入式手势识别系统的速度慢和功耗高的问题,提出基于深度学习处理单元(deep-learning processor unit,DPU)的手势识别系统设计方法。通过把DPU部署于现场可编程门阵列(field programmable gate array,FPGA)器件,再调用ResNet-50网络对手势图片进行识别,设计并实现了一套低功耗的手势识别系统。实验结果表明,系统在工作频率为150 MHz时识别准确率为97.7%,运行速率可以达到129 GOPS,其能效比为26.3 GOPS/W,优于一些现有嵌入式FPGA神经网络手势识别实现方法。 In order to solve the problems of low speed and high power consumption in the embedded gesture recognition system,a design scheme of gesture recognition system based on deep-learning processor unit(DPU)was proposed.By deploying the DPU on FPGA and applying ResNet-50 network to recognize gesture images,a low-power gesture recognition system was implemented.The experimental results show that the recognition accuracy is 97.7%and the running speed reaches 129 GOPS when the system operating frequency is 150 MHz,and the energy efficiency ratio is 26.3 GOPS/W,which is better than some existing embedded FPGA neural network gesture recognition methods.
作者 黎海涛 刘鸣 张帅 LI Haitao;LIU Ming;ZHANG Shuai(Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China;Fan Gongxiu Honors College,Beijing University of Technology,Beijing 100124,China)
出处 《北京信息科技大学学报(自然科学版)》 2021年第3期1-7,共7页 Journal of Beijing Information Science and Technology University
基金 航空科学基金资助项目(2018ZC15003)。
关键词 深度学习处理单元 手势识别 神经网络 现场可编程门阵列 deep-learning processor unit gesture recognition neural network field programmable gate array
  • 相关文献

参考文献2

二级参考文献16

  • 1LeCun Y,Bottou L,Bengio Y,et al.Gradient-based learningapplied to document recognition[J].Proceedings ofthe IEEE,1998,86(11):2278-2324.
  • 2Simard P Y,Steinkraus D,Platt J C.Best practices forconvolutional neural networks applied to visual documentanalysis[C]//Proceedings of the 7th InternationalConference on Document Analysis and Recognition,2003:958-962.
  • 3Chellapilla K,Puri S,Simard P.High performance convolutionalneural networks for document processing[C]//10th International Workshop on Frontiers in HandwritingRecognition,2006.
  • 4Chellapilla K,Shilman M,Simard P.Optimally combininga cascade of classifiers[C]//Electronic Imaging,2006:207-214.
  • 5Garcia C,Delakis M.Convolutional face finder:a neuralarchitecture for fast and robust face detection[J].IEEETransactions on Pattern Analysis and Machine Intelligence,2004,26(11):1408-1423.
  • 6Frome A,Cheung G,Abdulkader A,et al.Large-scale privacyprotection in google street view[C]//IEEE InternationalConference on Computer Vision,2009:2373-2380.
  • 7Bouvrie J.Notes on convolutional neural networks[Z].2006.
  • 8Sankaradas M,Jakkula V,Cadambi S,et al.A massivelyparallel coprocessor for convolutional neural networks[C]//20th IEEE International Conference on Application-specificSystems,Architectures and Processors,2009:53-60.
  • 9Cadambi S,Majumdar A,Becchi M,et al.A programmableparallel accelerator for learning and classification[C]//Proceedings of the 19th International Conference onParallel Architectures and Compilation Techniques,2010:273-284.
  • 10Farabet C,Poulet C,LeCun Y.An FPGA-based streamprocessor for embedded real-time vision with convolutionalnetworks[C]//2009 IEEE 12th International Conferenceon Computer Vision Workshops (ICCV Workshops),2009:878-885.

共引文献52

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部