期刊文献+

融入结构度中心性的社交网络用户影响力评估算法 被引量:6

Social Network User Influence Evaluation Algorithm Integrating Structure Centrality
下载PDF
导出
摘要 在社交网络中,通过追踪极少数的强影响力用户,可以实现宏观管控信息的传播过程,而用户影响力是一种无法预判的后验信息,仅能依靠有关特征来确定。因此,提出了一种融入结构度中心性的社交网络用户影响力评估(Structural-Degree-Centrality User Influence Rank,SDRank)算法来识别强影响力用户。该算法基于PageRank算法,引入了结构度中心性,结合了加入时间与平均转发数的调节因子,进而计算出用户的影响力值。相较于其他的现有算法,SDRank算法仅从用户本身的行为角度出发,不需要诸如个人标签、粉丝等存在伪造风险与缺省可能的具体信息,也不必挖掘传播内容的潜在信息,适用性更广泛。以微博用户的级联转发数据集作为实验对象,对被转发数排名Top-K用户的平均转发数等相关结果进行了可视化分析,探讨了用户转发行为在社交网络信息传播中的作用。在实验过程中,所提算法与PageRank,TrustRank算法相比,准确率、召回率和F1-measure值都有了一定的提高,验证了SDRank算法的有效性。 In social networks,the transmission process of information can be controlled macro by tracking a small number of strongly influential users,but user influence is a kind of posterior information that cannot be predicted and can only be determined by relevant characteristics.Therefore,this paper proposes a social network user influence evaluation algorithm that integrates structural degree centrality to identify users with strong influence.As an evaluation algorithm for social network user influence,SDRank is developed based on an improved PageRank algorithm,which introduces structural degree centrality,combines the re-gulatory factor of join time and average forward number,and then calculates the user’s influence.Compared to other existing algorithms,SDRank is applicable to a broader set of scenarios from a user behavior perspective,for it doesn’t require specific information(such as personal tags,fans)that have potential forgery risks or default possibilities,and doesn’t have to exploit the under-lying information of disseminated content.This paper takes the cascade forwarding dataset of Weibo users as the experimental object,makes a visual analysis of the average forwarding number of top-K users and other relevant results,and discusses the role of user forwarding behavior in information transmission in social network.During the experiment,its accuracy,recall rate and F1-measure value are greatly improved compared with PageRank and TrustRank,and the effectiveness of SDRank algorithm is verified.
作者 谭琪 张凤荔 王婷 王瑞锦 周世杰 TAN Qi;ZHANG Feng-li;WANG Ting;WANG Rui-jin;ZHOU Shi-jie(School of Information and Software Engineering(Software Engineering),University of Electronic Science and Technology of China,Chengdu 610054,China)
出处 《计算机科学》 CSCD 北大核心 2021年第7期124-129,共6页 Computer Science
基金 国家自然科学基金(61802033,61472064,61602096) 四川省区域创新合作项目(2020YFQ0018) 四川省科技计划(2018GZ0087,2019YJ0543) 博士后基金项目(2018M643453) 广东省国家重点实验室项目(2017B030314131) 网络与数据安全四川省重点实验室开放课题(NDSMS201606)。
关键词 用户影响力 度中心性 用户行为 社交网络 User influence Degree centrality User behavior Social network
  • 相关文献

参考文献11

二级参考文献65

  • 1张嗣瀛.复杂系统、复杂网络自相似结构的涌现规律[J].复杂系统与复杂性科学,2006,3(4):41-51. 被引量:15
  • 2胡海波,王林.幂律分布研究简史[J].物理,2005,34(12):889-896. 被引量:87
  • 3李玉琳,高志刚,韩延玲.模糊综合评价中权值确定和合成算子选择[J].计算机工程与应用,2006,42(23):38-42. 被引量:107
  • 4方爱丽,高齐圣,张嗣瀛.引文网络的幂律分布检验研究[J].统计与决策,2007,23(14):22-24. 被引量:16
  • 5Musial K,Budka M,Juszczyszyn K.Creation and growth of online social network[J].World Wide Web,2013,16(4):421-447.
  • 6Bollen J,Goncalves B,Ruan G C,et al.Happiness Is Assortative in Online Social Networks[J].Artificial Life,2011,17:237-251.
  • 7Zheng M,LüL,Zhao M.Spreading in online social networks:The role of social reinforcement[J].Physical Review E,2013,88(1):012818.
  • 8Li Q,Zhou T,Lv L,et al.Identifying influential spreaders by weighted leaderrank[J].ar Xiv preprint ar Xiv,2014,404:47-55.
  • 9Ugander J,Backstrom L,Marlow C,et al.Structural diversity in social contagion[J].Proceedings of the National Academy of Sciences,2012,109(16):5962-5966.
  • 10Page L,Brin S,Motwani R,et al.The PageRank citation ranking:Bringing order to the web[Z].1999.

共引文献62

同被引文献34

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部