期刊文献+

一维可压缩Navier-Stokes-Vlasov方程组的渐近行为 被引量:1

Asymptotical behavior of one-dimensional compressible Navier-Stokes-Vlasov system
原文传递
导出
摘要 本文研究一维可压缩Navier-Stokes-Vlasov耦合模型在空间周期区域上初值问题整体解的渐近行为;证明随着时间发展,流体速度和粒子宏观平均速度以指数速率收敛到同一个常速度,并且粒子分布函数关于速度变量的紧支集以指数速率收缩到一个点集. In this paper,we investigate the asymptotical behavior of global solutions to the initial value problem for one-dimensional compressible Navier-Stokes-Vlasov system in the spatial periodic domain.It is showed that both the fluid velocity and the macroscopic velocity of the particles converge to the same speed exponentially in time,and the compact support of the distribution function associated with the velocity variable converges to a point set exponentially in time.
作者 李海梁 寿凌云 Hailiang Li;Lingyun Shou
出处 《中国科学:数学》 CSCD 北大核心 2021年第6期985-1002,共18页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11931010,11671384和11871047)资助项目。
关键词 流体-粒子耦合模型 可压缩Navier-Stokes方程组 Vlasov方程 渐近行为 fluid-particle model compressible Navier-Stokes system Vlasov equation asymptotical behavior
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部