期刊文献+

基于LSTM的深基坑开挖地表沉降预测研究 被引量:6

Study on prediction model of ground subsidence in deep foundation pit excavation based on LSTM
下载PDF
导出
摘要 针对传统的BP神经网络在机械学习过程中容易出现的运行速度慢、易过度拟合和与实测值误差较大等问题,提出了一种基于循环神经网络(RNN)的长短期记忆人工(LSTM)神经网络模型。通过广州市某深基坑开挖的周围地表沉降监测数据进行LSTM神经网络训练,并对后续地表沉降值进行预测,预测结果表明:相比于传统的BP神经网络,LSTM神经网络具有较高的预测精度,可较好的实现基坑开挖过程中深基坑周围地表沉降预测。研究成果可为深基坑施工过程中周围土体变形监测和预警提供参考。 In order to solve the problems of the traditional BP neural network in the process of mechanical learning,such as slow running speed,easy to overfit and large error with the measured value,this paper proposes a kind of LSTM neural network model based on the recursive neural network(RNN).Around a deep foundation pit excavation by Guangzhou LSTM neural network training,the surface subsidence monitoring data and the subsequent deep excavation surface subsidence prediction,prediction results show that compared with the traditional BP neural network,the LSTM neural network has higher prediction accuracy,can better realize the ground settlement around deep foundation pit excavation process.The research results can provide reference for the deformation monitoring and early warning of the surrounding soil in the process of deep foundation pit construction.
作者 王永军 Wang Yongjun(Guangdong China Coal Jiangnan Engineering Surveying and Designing Corporation,Guangzhou 510440,China)
出处 《山西建筑》 2021年第14期74-75,140,共3页 Shanxi Architecture
关键词 循环神经网络 机器学习 深基坑 沉降预测 recursive neural networks machine learning deep foundation pit settlement prediction
  • 相关文献

参考文献10

二级参考文献92

共引文献66

同被引文献71

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部