期刊文献+

张量低秩约束下的多帧图像去模糊

Multi-frame Deblurring Model Based on Low-rank Tensor
下载PDF
导出
摘要 矩阵低秩估计模型在图像处理任务中有着广泛地运用。针对图像去模糊,利用矩阵低秩先验能保留图像的重要边缘信息从而实现去模糊。而对于多帧图像去模糊,基于矩阵的低秩模型并未充分考虑多帧图像间的时序和空间关系。针对该问题,我们提出基于三维张量低秩先验的多帧视频图像盲去模糊模型。在模型中,首先将多帧连续图像按时序维堆叠成张量,显式地考虑多帧图像间的时空关系,同时利用张量低秩先验约束保留图像重要纹理结构信息。利用交替迭代的方法求解模型,实现去模糊。通过在不同的数据集上实验结果表明,该方法能达到较好的去模糊结果。 Low-rank matrix approximation models have been successfully applied to numerous vision tasks.For image deblurring,the use of low-rank prior can retain the important edge information.However,for multi-frame image deblurring,the low-rank matrix models do not consider the temporal and spatial relationship among multi-frame images.In this paper,we propose a low-rank prior deblurring model based on a three-dimensional tensor,we pile up the continuous images into a tensor according to the temporal dimension,and use the tensor low-rank prior constraint,which not only maintains the dominant texture structure information to estimate the blur kernel but also considers the spatiotemporal relationship among multiple frames.We solve the energy model by alternating direction minimization method.The experimental results on different datasets show that our method can achieve better results.
作者 徐倩 钱沄涛 XU Qian;QIAN Yuntao(School of Computer Science and Technology,Zhejiang University,Hangzhou,Zhejiang 310027,China)
出处 《信号处理》 CSCD 北大核心 2021年第6期975-983,共9页 Journal of Signal Processing
基金 装备预研教育部联合基金(6141A02022708)。
关键词 多帧去模糊 低秩张量先验 模糊核 multi-frame deblurring low-rank tensor prior blur kernel
  • 相关文献

参考文献2

二级参考文献21

  • 1夏明革,何友,苏峰,黄晓冬.一种基于小波多尺度边缘检测的图像融合算法[J].电子与信息学报,2005,27(1):56-59. 被引量:7
  • 2李仕,孙辉,张葆.运动模糊图像的实时恢复算法[J].光学精密工程,2007,15(5):767-772. 被引量:13
  • 3Leah Bar, Alexander Brook, Nir Sochen, Nahum Kiryati. Deblurring of Color Images Corrupted by Impulsive Noise [ J ]. IEEE Transactions on Image Processing. 2007, 16 (4) :1101-1111.
  • 4Mariana S. C. Almeida, Luis B. Almeida. Blind Deblurring of Natural Images [ C ]. Las Vegas, USA : International Conference on Acoustics, Speech, Signal Processing (ICASSP) ,2008 : 1261-1264.
  • 5Marius Tico, Mejdi Trimeche, Markku Vehvilainen. Motion Blur Identification Based on Differently Exposed Images [ C ]. Atlanta, GA : IEEE International Conference on Image Processing,2006 : 2021-2024.
  • 6Viet-Anh Nguyen, Yap-Peng Tan. Efficient Block-Matching Motion Estimation Based on Integral Frame Attributes [ J]. IEEE Transactions on Circuits and Systems for Video Technology. 2006,16 ( 3 ) :375-385.
  • 7Qin Liu, Zhen-Xing Chen, Satoshi Goto, Takeshi Ikenaga. Fast Motion Estimation Algorithm Based on Edge Block Detection and Motion Vector Information [ C ]. Xiamen, China: Proceedings of 2007 International Symposium on Intelligent Signal Processing and Communication Systems, 2007:590-593.
  • 8Ai-Mei Huang,Truong Q. Nguyen. A Multistage Motion Vector Processing Method for Motion-Compensated Frame Interpolation[ J ]. IEEE Transactions on Image Processing. 2008,17 ( 5 ) :694-708.
  • 9Huan-Qiang Zeng, Can-Hui Cai, Sanjit K. Mitra. Predictive Mode Reduction and Selective Pixel Matching Based Motion Estimation Algorithm for H. 264 [ C ]. Xiamen, China : Proceedings of 2007 International Symposium on Intelligent Signal Processing and Communication Systems,2007: 486-489.
  • 10Zheng-Bing Zhang,Zhen-Hua Xia,Xiao-Dong Xiong,Guang- Xi Zhu. FFT-based 4-parameter Global Motion Estimation [ C]. Xi'an, China: 27th International Congress on High-Speed Photography and Photonics (Proceedings Volume) ,2006.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部