期刊文献+

基于高维多目标优化的多无人机协同航迹规划 被引量:16

Multi-UAV coordinated path planning based on many-objective optimization
原文传递
导出
摘要 随着无人机应用领域的增多,多无人机协同航迹规划问题变得愈发重要.然而,现存的多无人机协同航迹规划问题大多将多个目标加权转换为单目标问题进行优化,为减少多目标加权的主观性,本文提出一种基于高维多目标优化的多无人机协同航迹规划模型,此模型可以同时优化多无人机航迹距离代价、多无人机航迹威胁代价、多无人机航迹能耗代价,以及多无人机协同性能.同时,为提高高维多目标优化算法在解决此模型时的性能,提出一种基于个体评估交叉策略的NSGA-Ⅲ算法(NSGAⅢ-ICO),可以根据算法运行代数综合评估个体优劣并指导种群交叉操作.仿真结果证明,此模型可以有效地提供多无人机协同航迹,且通过与其他高维多目标优化算法的比较,可以证明此改进算法可以有效地提高多无人机协同航迹规划的多种性能. With the increase in the application areas of unmanned aerial vehicles(UAVs),the problem of coordinated path planning for multi-UAVs becomes more and more significant.However,most of the existing methods optimize this problem by converting multi-objective weighting into a single-objective problem.To reduce the subjectivity of multi-objective weighting,a coordinated path planning model based on many-objective optimization is proposed to optimize the multi-UAVs’track distance cost,track threat cost,track energy cost,and coordination performance.In the many-objective evolutionary algorithm(MaOEA),the convergence and diversity of the individuals are both important indicators to evaluate the performance of individuals.To solve the problem that individuals in the algorithm are not easy to evaluate,an NSGA-Ⅲalgorithm based on the individual evaluation mating strategy(NSGAⅢ-ICO)is proposed,which can comprehensively evaluate the performance of individuals according to the generation of the algorithm and guide the mating operation.Simulation results show that this model can effectively provide coordinated tracks for multi-UAVs,and by comparing it with other MaOEAs,it can be proved that this proposed algorithm can effectively improve the performance of coordinated path planning for multi-UAVs.
作者 蔡星娟 胡钊鸣 张志霞 王茜 崔志华 张文生 Xingjuan CAI;Zhaoming HU;Zhixia ZHANG;Qian WANG;Zhihua CUI;Wensheng ZHANG(School of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024,China;Institute of Automation,Chinese Academy of Sciences,Beijing 100190,China)
出处 《中国科学:信息科学》 CSCD 北大核心 2021年第6期985-996,共12页 Scientia Sinica(Informationis)
基金 国家重点研发计划(批准号:2018YFC1604000) 国家自然科学基金项目(批准号:61806138,U1636220,61961160707,61976212) 山西省重点研发计划项目(批准号:201903D421048,201903D121119)资助。
关键词 多无人机 协同航迹规划 高维多目标优化算法 个体综合评估 multi-UAVs coordinated path planning many-objective evolutionary algorithm individual comprehensive assessment
  • 相关文献

参考文献6

二级参考文献64

  • 1刘梅,权太范,姚天宾,李海昊.多传感器多目标无源定位跟踪算法研究[J].电子学报,2006,34(6):991-995. 被引量:25
  • 2Bortoff S A. Path planning for unmanned air vehicles. In: Proceedings of the American Control Conference. Chicago: IEEE, 2000. 364-368.
  • 3Esmat R, Hossein N,Saeid S. GSA: A gravitational search algorithm. Inform Sci, 2009, 179: 2232-2248.
  • 4Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks. Perth, Australia: IEEE, 1995. 1942-1948.
  • 5Li C S, Zhou J Z. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm. Energ Convers Manage, 2011, 52: 374-381.
  • 6Storn R, Price K. Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. J Global Optim, 1997, 11: 341-359.
  • 7Xu C F, Duan H B, Liu F. Chaotic artificial bee colony approach to Uninhabited Combat Air Vehicle (UCAV) path planning. Aerosal Sci Tech, 2010, 14: 535-541.
  • 8Sarafrazi S, Nezamabadi-pour H, Saryazdi S. Disruption: A new operator in gravitational search algorithm. Sci Iran, 2011,18: 539-548.
  • 9Pu H Z, Zhen Z Y, Wang D B. Modified shuffled frog leaping algorithm for optimization of UAV flight controller. Int J Intell Comput Cybern, 2011,4: 5-39.
  • 10Deb K, Pratap A, Agarwal A, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.

共引文献167

同被引文献138

引证文献16

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部