摘要
为进一步有效地在组织内推进数据质量评估工作,文章基于劳拉·塞巴斯蒂安-科尔曼提出的数据质量评估框架(DQAF),设计了一种通用工作机制,从数据质量评估的工作内容、工作流程和人员分工3个方面进行系统研究,完善工作内容,建立良性循环的工作流程。特别是针对原有的数据质量评估框架未能结合国内常见的企事业单位实际情况这一问题,提出按环节划分的人员分工模式,可覆盖机关、企事业单位等多种不同性质的组织,确保整个数据质量评估工作机制有效实施。
In order to further effectively advance the work on data quality assessment in the organization, this paper introduces an universal mechanism based on the Data Quality Assessment Framework(DQAF) developed by Laura Sebastian-Coleman.The paper presents a systematic research conducted from three aspects: the content of data quality assessment work, the working process, and division of labor, improving the work content and establishing a virtuous cycle of work flow. Especially for the problem that the original data quality evaluation framework fails to combine the actual situation of domestic enterprises and public institutions, the paper proposes a link-division-based labor division model, which can cover various organizations of different nature, such as government institutions, public institutions, and enterprises, to ensure the effective implementation of the whole data quality assessment mechanism.
作者
刘鹏
Liu Peng(School of Economics,Capital University of Economics and Business,Beijing 100070,China)
出处
《统计与决策》
CSSCI
北大核心
2021年第11期49-52,共4页
Statistics & Decision