期刊文献+

An experimental study on spray auto-ignition of RP-3 jet fuel and its surrogates 被引量:3

原文传递
导出
摘要 Jet fuel is widely used in air transportation,and sometimes for special vehicles in ground transportation.In the latter case,fuel spray auto-ignition behavior is an important index for engine operation reliability.Surrogate fuel is usually used for fundamental combustion study due to the complex composition of practical fuels.As for jet fuels,two-component or three-component surrogate is usually selected to emulate practical fuels.The spray auto-ignition characteristics of RP-3 jet fuel and its three surrogates,the 70%mol n-decane/30%mol 1,2,4-trimethylbenzene blend(Surrogate 1),the 51%mol n-decane/49%mol 1,2,4-trimethylbenzene blend(Surrogate 2),and the 49.8%mol n-dodecane/21.6%mol iso-cetane/28.6%mol toluene blend(Surrogate 3)were studied in a heated constant volume combustion chamber.Surrogate 1 and Surrogate 2 possess the same components,but their blending percentages are different,as the two surrogates were designed to capture the H/C ratio(Surrogate 1)and DCN(Surrogate 2)of RP-3 jet fuel,respectively.Surrogate 3 could emulate more physiochemical properties of RP-3 jet fuel,including molecular weight,H/C ratio and DCN.Experimental results indicate that Surrogate 1 overestimates the auto-ignition propensity of RP-3 jet fuel,whereas Surrogates 2 and 3 show quite similar auto-ignition propensity with RP-3 jet fuel.Therefore,to capture the spray auto-ignition behaviors,DCN is the most important parameter to match when designing the surrogate formulation.However,as the ambient temperature changes,the surrogates matching DCN may still show some differences from the RP-3 jet fuel,e.g.,the first-stage heat release influenced by low-temperature chemistry.
出处 《Frontiers in Energy》 SCIE CSCD 2021年第2期396-404,共9页 能源前沿(英文版)
基金 This research work was supported by the National Natural Science Foundation of China(Grant Nos.51776124 and 51861135303) the Belt and Road International Collaboration Program by Shanghai Science and Technology Committee(Grant No.19160745400).
  • 相关文献

参考文献6

二级参考文献38

  • 1范学军,俞刚.大庆RP-3航空煤油热物性分析[J].推进技术,2006,27(2):187-192. 被引量:112
  • 2朱玉红,余彩香,李子木,米镇涛,张香文.航空燃料超临界热裂解过程中焦炭的形成[J].石油化工,2006,35(12):1151-1155. 被引量:16
  • 3Humer, S.; Frassoldati, A.; Granata, S.; Faravelli, T.; Ranzi, E.; Seiser, R.; Seshadri, K. Proc. Combust. lnst. 2007, 31 (1), 393. doi: 10.1016/j.proci.2006.08.008.
  • 4Dagaut, P. Phys. Chem. Chem. Phys. 2002, 4 (11), 2079. doi: 10.1039/bl 10787a.
  • 5Patterson, P.; Kyne, A.; Pourkashanian, M.; Williams, A.; Wilson, C. J.. Propul. Power 2001, 17 (2), 453. doi: 10.2514/ 2.5764.
  • 6Montgomery, C. J.; Cannon, S. M.; Mawid, M. A.; Sekar, B. Reduced Chemical Kinetic Mechanisms for JP-8 Combustion. In Procedings of the 40th AIAA Aerospace Sciences Meeting and Exhibit, 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan 14-17, 2002; American Institute of Aeronautics and Astronautics: Reno, Nevada, 2002.
  • 7Cathormet, M.; Voisin, D.; Etsordi, A.; Sferdean, C.; Reuillon, M.; Boettner, J. C.; Dagaut, P. Kerosene Combustion Modeling Using Detailed and Reduced Chemical Kinetic Mechanisms. In RTO Meeting Proceedings 14, Gas Turbine Engine Combustion, Emissions and Alternative Fuels, RTO AVT Symposium, Lisbon, Portugal, Oct 12-16, 1998.
  • 8Honnet, S.; Seshadri, K.; Niemarm, U.; Peters, N. Proc. Combust. Inst. 2009, 32 (1), 485. doi: 10.1016/j. proci.2008.06.218.
  • 9Guo, J. J.; Wang, J. B.; Hua, X. X.; Li, Z. R.; Tan, N. X.; Li, X. Y. Chem. Res. Chin. Univ. 2014, 30 (3), 480. doi: 10.1007/ s40242-014-3460-0.
  • 10Wang, H.; You, X. Q.; Joshi, A. V.; Davis, S. G.; Laskin, A.; Egolfopoulos, F.; Law, C. K. USCMech Version 11. High- Temperature Combustion Reaction Model of HJCO/C,-C4 Compounds. http://ignis.usc.edu/USC_Mech II.htm (accessed May, 2007).

共引文献88

同被引文献17

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部