期刊文献+

基于RBF网络Q学习的AUV路径跟踪控制方法 被引量:7

Path following method for AUV based on Q-Learning and RBF neural network
下载PDF
导出
摘要 水下回收过程中,AUV航行速度受到多种因素影响而产生变化,艉部操纵舵效随之改变,直接影响了AUV回收路径跟踪控制性能。根据AUV航行状态,采用强化学习方法对AUV控制器进行自主学习优化,能够改善AUV航向及深度响应的性能指标,提高路径跟踪控制性能。建立AUV路径跟踪导引律,设计航向及俯仰运动滑模控制器,保证系统对外扰动的鲁棒性;采用Q学习方法,根据AUV航速、跟踪误差及其变化率,对滑模控制参数进行离线训练优化,搭建RBF网络加快训练过程,避免“维数灾”现象;将训练得到的RBF-Q学习网络应用于在线控制,与传统滑模控制器进行跟踪控制对比。仿真结果验证了算法的有效性。 In the underwater docking process,the oscillation on AUV velocity brings extra challenge on AUV path following.A Q-learning based Sliding Mode Control(SMC)method to increase the path following performances is proposed.Firstly,AUV guidance law is designed to reduce the path following error.Heading and depth sliding mode controllers are designed to track the guidance law.Then,according to AUV velocity,tracking error and the first derivative,the control parameters of SMC are optimized via Q-learning network.RBF neural network is built to accelerate the offline learning rate.Finally,numerical simulations are made to investigate the characteristics of the present method.Comparisons are made between the trained Q-learning based SMC and the traditional SMC.The results show the effectiveness of the present method.
作者 李泽宇 刘卫东 李乐 张文博 郭利伟 LI Zeyu;LIU Weidong;LI Le;ZHANG Wenbo;GUO Liwei(School of Marine Science and Technology, Northwestern Polytechnical University, Xi′an 710072, China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2021年第3期477-483,共7页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金(61903304) 国家重点研发计划项目(2016YFC0301700)资助。
关键词 自主水下航行器 路径跟踪 强化学习 RBF神经网络 autonomous underwater vehicle path following reinforcement learning neural network
  • 相关文献

参考文献4

二级参考文献47

  • 1Lapierre L, Soetanto D. Nonlinear path-following control of an AUV. Ocean Engineering, 2007, 34(11): 1734-1744.
  • 2Lapierre L, Jouvencel B. Robust nonlinear path-following control of an AUV. IEEE Journal of Oceanic Engineering~ 2008, 33(2): 89-102.
  • 3Wang H J, Chen Z Y, Jia H M, Chen X H. NN-backstepping for diving control of an underactuated AUV. In: Proceed- ings of the 2011 MTS/IEEE Kona Conference OCEANS~II. Waikoloa, HI: IEEE, 2011. 1-6.
  • 4Li J H, Lee P M. Path tracking in dive plane for a class of Torpedo-type underactuated UUVs. In: Proceedings of the 7th Asian Control Conference. Hong Kong, China: IEEE, 2009. 360-365.
  • 5Do K D, Pan J, Jiang Z P. Robust and adaptive path fol- lowing for underactuated autonomous underwater vehicls. Ocean Engineering, 2004, 31(16): 1967-1997.
  • 6Aguiar A P, Hespanha J P. Trajectory-tracking and path- following of underactuated autonomous vehicles with para- metric modeling uncertainty. IEEE Transactions on Auto- matic Control, 2007, 52(8): 1362-1379.
  • 7Encarnacao P, Pascoal A. 3D path following for autonomous underwater vehicle. In: Proceedings of the 39th IEEE Con- ference on Decision and Control. Sydney, NSW: IEEE, 2000. 2978-2982.
  • 8Borhaug E, Pettersen K Y. Cross-track control for under- actuated autonomous vehicles. In: Proceedings of the 44th IEEE Conference on Decision and Control. Spain: IEEE, 2005. 602-608.
  • 9Stotsky A, Hedrick J K, Yip P 1% The use of sliding modes to simplify the backstepping control method. In: Proceedings of the 1997 American Control Conference. Albuquerque, NM: IEEE, 1997. 1703-1708.
  • 10Yip P P, Hedrick J K, Swaroop D. The use of linear filter- ing of simplified integrator backstepping control of nonlin- ear systems. In: Proceedings of the 1996 IEEE Workshop on Variable Structure System. Tokyo: IEEE, 1996. 211-215.

共引文献54

同被引文献86

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部