期刊文献+

一种新的夜间单图像去雾方法 被引量:4

New approach to dehaze single nighttime image
下载PDF
导出
摘要 夜间去雾算法相较于昼间去雾更加困难,夜间雾霾图像由于不存在全局统一的大气光值,使得其在求解模型过程中不仅要根据单图像来估计透射率图,同时还需要对光照情况进行估计后才能求解得到无雾图像。而现有的夜间去雾算法或多或少存在颜色偏移,其去雾效果难以令人满意,其主要原因在于利用单图像进行去雾时,所依赖的图像信息较少,各种先验假设条件难以在夜间得到满足。提出了一种新的夜晚图像去雾方法,通过层分离的方法,从带雾图像中分离出图像的光照层,据此估计带雾图像的光照情况,并进一步根据图像光照层来对图像透射率图进行估计,从而解决了夜晚大气光不统一难以准确估计且透射率难以求解的问题,实验结果表明,新算法取得了较好的实验效果。 This paper focus on the dehazing of a single image captured at nighttime.The current state-of-the-art nighttime dehazing approaches usually suffer from the color shift problem due to the fact that the assumptions enforced underdaytime cannot get applied to the nighttime image directly.The classical dehazing methods try to estimate the transmission mapand accurate light to dehaze a single image.The present basic idea is to firstly separate the light layer from the hazy image and thetransmission map can be computed afterwards.A new layer separation method is proposed to solve the non-globalatmospheric light problem.The present method on some real datasets to show its superior performance is validated.
作者 段镖 李靖 陈怀民 茹懿 张泽 DUAN Biao;LI Jing;Chen Huaimin;RU Yi;ZHANG Ze(School of Automation, Northwestern Polytechnical University, Xi′an 710072, China;School of Mechanical Engineering, Northwestern Polytechnical University, Xi′an 710072, China)
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2021年第3期604-610,共7页 Journal of Northwestern Polytechnical University
基金 国家自然科学基金青年项目(51705424)资助。
关键词 图像层分离 传输图估计 夜间图像除雾 image layer separation transmission map estimation nighttime image dehazing
  • 相关文献

参考文献1

二级参考文献27

  • 1Kuang Y, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993.
  • 2Li Z, Chen F D, and He M X, Global stability of a delay differential equations model of plankton allelopathy, Appl. Math. Comput., 2012, 218(13): 7155-7163.
  • 3Chen F D, Li Z, Chen X X, and Laitochova J, Dynamic behaviors of a delay differential equation model of plankton allelopathy, J. Comput. Appl. Math., 2007, 206(2): 733-754.
  • 4Sole J, Garca-Ladona E, Ruardij P, and Estrada M, Modelling allelopathy among marine algae, Ecol. Model., 2005, 183: 373-384.
  • 5Huo H F and Li W T, Permanence and global stability for non autonomous discrete model of plankton allelopathy, Appl. Math. Lett., 2004, 17: 1007-1013.
  • 6Liu Z J and Chen L S, Positive periodic solution of a general discrete non-autonomous difference system of plankton allelopathy with delays, J. Comput. Appl. Math., 2006, 197(2): 446-456.
  • 7Chattopadhyay J, Effect of toxic substances on a two-species competitive system, Ecol. Model., 1996, 84: 287-289.
  • 8Mukhopadhyay A, Chattopadhyay J, and Tapaswi P K, A delay differential equations model of plankton allelopathy, Math. Biosci., 1998, 149: 167-189.
  • 9Bandyopadhyay M, Dynamical analysis of an allelopathic phytoplankton model, J. Bioi. Byst., 2006, 14(2): 205-217.
  • 10Smith M, Models in Ecology, Cambridge University Press, Cambridge, 1974.

共引文献6

同被引文献28

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部