期刊文献+

Multiobjective Electric Machine Optimization for Highest Reliability Demands 被引量:6

下载PDF
导出
摘要 This article is about illustrating a workflow for incorporating reliability measures to typical electric machine design optimization scenarios.Such measures facilitate comparing designs not only for rated conditions,but also allow to analyze their performance in the presence of unevitable tolerances.Consequently,by additionally considering reliability or robustness as objectives compared to conventional optimization scenarios,designs featuring low parameter sensitiveness can be obtained.The analysis of the design’s reliability as part of solving optimization problems involves a significant increase in required numerical evaluations.To minimize the associated prolongation of the runtime,an approach featuring a design of experiments based reduction of required computations and a consequent surrogate modeling technique is presented here.After successful training,the metamodel can be applied for fast evaluating lots of different parameter combinations.A test problem is defined and analyzed.Based on the observed findings,the necessity of incorporating robustness evaluations to machine design optimization becomes evident.In addition,the derived models allow for studying the impact of any tolerance-affected parameter on the machine performance in detail.This facilitates further beneficial studies,as for instance the analysis of selected changes of tolerance levels rather than a general minimization of the respective ranges which usually is associated with high production cost.
出处 《CES Transactions on Electrical Machines and Systems》 CSCD 2020年第2期71-78,共8页 中国电工技术学会电机与系统学报(英文)
基金 This work has been supported by the COMET-K2“Center for Symbiotic Mechatronics”of the Linz Center of Mechatronics(LCM)funded by the Austrian federal government and the federal state of Upper Austria.
  • 相关文献

同被引文献124

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部