期刊文献+

一种新的空谱联合高光谱图像分类方法 被引量:7

A New Spectral-spatial Joint Method of Hyperspectral Image Classification
下载PDF
导出
摘要 为了充分利用高光谱遥感图像的空间信息和光谱信息,以提高分类精度,文章研究了分别采用二维和三维Gabor滤波对高光谱遥感图像进行特征提取,然后与高光谱遥感图像的光谱信息进行融合,并基于堆栈式稀疏自编码器的深度学习网络对融合图像进行分类的方法。研究结果表明,所提出的空谱联合分类器与传统的光谱信息分类器相比,分类性能得到了显著提高,且三维Gabor滤波的空谱联合分类器的分类性能优于二维Gabor滤波的空谱联合分类器,并具有较强的鲁棒性。 In order to make the full use of spatial and spectral information of hyperspectral remote sensing image to improve the classification accuracy,this paper firstly uses two-dimensional and three-dimensional Gabor filters to extract the features of hyperspectral remote sensing images,and then fuses them with the spectral information of hyperspectral remote sensing images.Finally,it classifies the fusion images based on the deep learning network of the stack sparse auto-encoder.The results show that compared with the traditional spectral information classifier,the performance of the proposed spectral-spatial joint classifier is significantly improved,and the spectral-spatial joint classifier with three-dimensional Gabor filter is better than that with two-dimensional Gabor filter,and has strong robustness.
作者 段小川 王广军 梁四海 杜海波 吴萍 DUAN Xiaochuan;WANG Guangjun;LIANG Sihai;DU Haibo;WU Ping(School of Land Science and Technology,China University of Geosciences(Beijing),Beijing 100083,China;Tianjin Survey Design Institute Group Co.,Ltd.,Tianjin 300191,China;School of Water Resources and Environment,China University of Geosciences(Beijing),Beijing 100083,China;Inner Mongolia Survey Team of Coalfield Geology Bureau,Hohhot 010010,China;Qinghai Bureau of Environmental Geology Exploration,Xining 810007,China)
出处 《遥感信息》 CSCD 北大核心 2021年第3期76-84,共9页 Remote Sensing Information
基金 中国科学院战略性先导科技专项(A类)子课题(XDA20100103) 青海省应用基础研究项目(2017-ZJ-743) 中国地调局地调项目(20191006)。
关键词 深度学习 堆栈式稀疏自编码 二维Gabor滤波 三维Gabor滤波 分类 deep learning stack sparse auto-encoder two-dimensional Gabor filter three-dimensional Gabor filter classification
  • 相关文献

参考文献5

二级参考文献53

  • 1WANG Qiao1,WU ChuanQing1,LI Qing1 & LI JunSheng2 1 Satellite Environment Center,Ministry of Environmental Protection,Beijing 100029,China,2 Center for Earth Observation and Digital Earth,Chinese Academy of Sciences,Beijing 100190,China.Chinese HJ-1A/B satellites and data characteristics[J].Science China Earth Sciences,2010,53(S1):51-57. 被引量:18
  • 2张钧萍,张晔.基于多特征多分辨率融合的高光谱图像分类[J].红外与毫米波学报,2004,23(5):345-348. 被引量:8
  • 3惠文华.基于支持向量机的遥感图像分类方法[J].地球科学与环境学报,2006,28(2):93-95. 被引量:46
  • 4黄意玢,董超华,范天锡.用神舟三号中分辨率成像光谱仪数据反演大气水汽[J].遥感学报,2006,10(5):742-748. 被引量:7
  • 5http://geology.cr.usgs.gov/pub/open-file-reports/ofr-01-0429/imspec.html[EB/OL].
  • 6Bagheri S, Stein M, Dios R.Utility of hyperspectral data for bathymetric mapping in a turbid estuary[J]. INT.J. Remote Sensing,1986,19(6):1179-1188.
  • 7Gitelson A, Garbuzov G.Quantitative remote sensing methods for real-time monitoring of inland waters quality[J]. INT.J. Remote Sensing,1993,14(7):1269-1295.
  • 8Danaher S, O'Mongain E, Walsh J.A new cross-correlation algorithm and the detection of rhodamine-B dye in sea water[J]. INT.J. Remote Sensing,1992,13(9):1743-1755.
  • 9中国空间科学学会空间遥感专业委员会编.成像光谱技术与应用,2002年7月,温州.
  • 10Lothar Hermes, Dieter Frieau, Jan Puzicha, et al. Support Vector Machines for Land Usage Classification in Landsat TM Imagery[J] In: Proc. IGARSS 99,1:348-350.

共引文献270

同被引文献53

引证文献7

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部