摘要
研究亚纯函数的导数与亚纯函数的平移算子的唯一性问题.设f为非常数有穷级整函数,c为非零有穷复数,a1,a2为两个判别的非零有穷复数,若f的k阶导数f(k)(z)与平移算子f(z+c)分担0 CM,且满足截断分担条件E1)(ai,f(k))=E1)(ai,f(z+c)),i=1,2,则f(k)(z)≡f(z+c)或者f(k)(z)≡-f(z+c).
In this paper,we study the problem of uniqueness on derivatives and shifts of meromorphic functions.Let f be a nonconstant entire function with finite order,c be a nonzero finite complex number,a1,a2 be two distinct nonzero finite complex numbers.If f(k)(z)and f(z+c)share 0 CM and satisfy E1)(ai,f(k))=E1)(ai,f(z+c)),i=1,2,then f(k)(z)≡f(z+c)or f(k)(z)≡-f(z+c)holds.
作者
陈省江
CHEN Sheng-jiang(College of Mathematics and Physics,Ningde Normal University,Ningde,Fujian 352100,China)
出处
《宁德师范学院学报(自然科学版)》
2021年第2期136-140,共5页
Journal of Ningde Normal University(Natural Science)
基金
国家自然科学基金项目(11801291)
宁德师范学院科研创新团队(2019T01)
宁德师范学院科人才引进项目(2020Y03).
关键词
亚纯函数
导数
平移算子
唯一性
meromorphic function
derivative
shift
uniqueness