摘要
As power systems experience increased wind penetration,an effective analysis and assessment of the influence of wind energy on power system transient stability is required.This paper presents a novel center of inertia(COI)approach to understand how integrated doubly fed induction generators(DFIGs)affect the transient dynamics of a power system.Under the COI coordinate,the influence of integrated DFIGs is separated into the COI related and individual synchronous generator related parts.Key factors that affect the COI’s dynamic motion as well as the rotor dynamics of each individual synchronous generator with respect to the DFIG integration are investigated.To further validate the analysis,comparative simulations of three different scenarios with varying DFIG capacities,access locations,and the replacement of synchronous generators are conducted.The results show that the dynamics of the COI and the individual generators are affected by the integrated DFIGs via different mechanisms,and are sensitive to different variables in the DFIG’s integration condition.
基金
supported in part by the Major Program of the National Natural Science Foundation of China under Grant 51190103
the National High Technology Research and Development Program of China under Grant 2012AA050208.