期刊文献+

人工智能在应急管理领域的技术应用研究

Application of Artificial Intelligence in Emergency Management
下载PDF
导出
摘要 人工智能对人类社会生产进入智能化、自动化时代起到了巨大的推动作用,自其诞生以来,各种研究领域不断拓展延伸,技术理论不断发展,出现一系列技术分支,例如机器学习、数据挖掘、识别技术等,并在城市应急管理与社会智能安防等问题中得到广泛研究与应用,本文基于该类热点话题分析人工智能各技术分支在应急管理领域的应用与发展前景。 Artificial intelligence has played a great role in promoting the production of human society into the era of intelligence and automation. Since its birth,a variety of research fields have been expanding and extending,and technical theories have been developing continuously. A series of technical branches have emerged,such as machine learning,data mining,identification technology,etc.,and have been widely studied in urban emergency management and social intelligent security Based on these hot topics,this paper analyzes the specific application and development prospects of each branch of artificial intelligence technology in the field of emergency management.
作者 张懿 黄江兰 田立勤 栾尚敏 ZHANG Yi;HUANG Jianglan;TIAN Liqin;LUAN Shangmin(North China Institute of Science and Technology School of Computer,Sanhe 101601)
机构地区 华北科技学院
出处 《现代计算机》 2021年第17期87-91,95,共6页 Modern Computer
基金 自选课题经费资助:基于深度学习的WebUI代码生成技术研究(No.HZXKT2020012)。
关键词 机器学习 数据挖掘 语音识别 计算机视觉 应急管理 Machine Learning Data Mining Speech Recognition Computer Vision Emergency Management
  • 相关文献

参考文献13

二级参考文献122

  • 1魏英姿 ,赵明扬 .一种基于强化学习的作业车间动态调度方法[J].自动化学报,2005,31(5):765-771. 被引量:19
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:386
  • 3高阳,周如益,王皓,曹志新.平均奖赏强化学习算法研究[J].计算机学报,2007,30(8):1372-1378. 被引量:38
  • 4胡学钢,李培培,吴信东,吴共庆.A Semi-Random Multiple Decision-Tree Algorithm for Mining Data Streams[J].Journal of Computer Science & Technology,2007,22(5):711-724. 被引量:5
  • 5Marr D.Vision:A Computational Investigation Into the Human Representation and Processing of Visual Information.Cambridge:The MIT Press,2010.
  • 6LeCun Y,Bottou L,Bengio Y,Haffner P.Gradient-based learning applied to document recognition.Proceedings of the IEEE,1998,86(11):2278-2324.
  • 7Ferrari V,Jurie F,Schmid C.From images to shape models for object detection.International Journal of Computer Vision,2009,87(3):284-303.
  • 8Latecki L J,Lakamper R,Eckhardt U.Shape descriptors for non rigid shapes with a single closed contour//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Hilton Head,USA,2000,1:424-429.
  • 9Krizhevsky A.Learning Multiple Layers of Features from Tiny Images[M.S.dissertation].University of Toronto,2009.
  • 10Torralba A,Fergus R,Freeman W T.80 million tiny images:A large dataset for non-parametric object and scene recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970.

共引文献810

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部