摘要
目的基于剪切波弹性成像(SWE)量化参数和卷积神经网络建立深度学习(DL)模型预测肾脏病变。方法采集94例肾脏病变患者(病例组)和109名健康人(对照组)的肾脏超声SWE量化参数。利用卷积神经网络建立DL模型,比较DL模型和支持向量机、随机森林模型预测肾脏病变的敏感度、特异度、准确率和曲线下面积(AUC)。结果DL模型对预测肾脏病变的敏感度为90.48%,特异度为100%,准确率为95.12%,AUC为0.93;支持向量机模型的敏感度、特异度、准确率和AUC分别为80.74%、80.71%、80.98%、0.90,随机森林模型分别为82.22%、77.87%、80.33%和0.88。DL模型预测敏感度、特异度、准确率和AUC均高于支持向量机和随机森林模型,与支持向量机模型和随机森林模型预测肾脏病变差异均有统计学意义(P均<0.05)。结论基于SWE量化参数和卷积神经网络的DL模型预测肾脏疾病性能良好,具有一定临床价值。
Objective To observe the value of a deep learning(DL)model based on shear wave elastography(SWE)quantitative parameters and convolution neural network for predicting renal diseases.Methods The quantitative parameters of kidney ultrasound shear wave elastography were collected from 94 cases of kidney diseases(case group)and 109 healthy subjects(control group).DL model was built by convolutional neural network.The accuracy,sensitivity,specificity and area under the curve(AUC)for predicting renal diseases were compared among DL model,support vector machine and random forest models.Results The sensitivity,specificity,accuracy and AUC of DL model for predicting renal diseases was 90.48%,100%,95.12%and 0.93,of support vector machines was 80.74%,80.71%,80.98%and 0.90,while of random forest models was 82.22%,77.87%,80.33%and 0.88,respectively.The sensitivity,specificity,accuracy and AUC of DL model were all better than those of support vector machines and random forest models.There were significant differences between DL model and support vector machine model,also between DL model and random forest model for predicting renal diseases(both P<0.05).Conclusion DL model based on SWE quantitative parameters and convolution neural network had good performances in predicting renal diseases,therefore having certain clinical value.
作者
马立勇
董梦超
李广涵
刘健
武敬平
陆海涛
邹古明
卓莉
牟姗
郑敏
MA Liyong;DONG Mengchao;LI Guanghan;LIU Jian;WU Jingping;LU Haitao;ZOU Guming;ZHUO Li;MOU Shan;ZHENG Min(School of Information Science and Engineering,Harbin Institute of Technology,Weihai 264209,China;Department of Ultrasound Medicine,China-Japan Friendship Hospital,Beijing 100029,China;Department of Nephrology,China-Japan Friendship Hospital,Beijing 100029,China;Department of Nephrology,Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine,Shanghai 200127,China)
出处
《中国医学影像技术》
CSCD
北大核心
2021年第6期919-922,共4页
Chinese Journal of Medical Imaging Technology
基金
国家重点研发计划政府间国际科技创新合作重点专项(2017YFE0110500)
山东省自然科学基金(ZR2018MF026)
山东省重点研发计划项目(2019GGX101054)。
关键词
肾疾病
弹性成像技术
深度学习
kidney diseases
elasticity imaging techniques
deep learning