期刊文献+

Optimal Operation of Integrated Energy Systems Subject to Coupled Demand Constraints of Electricity and Natural Gas 被引量:7

原文传递
导出
摘要 This paper proposes a hybrid multi-objective optimization and game-theoretic approach(HMOGTA)to achieve the optimal operation of integrated energy systems(IESs)consisting of electricity and natural gas(E&G)utility networks,multiple distributed energy stations(DESs),and multiple energy users(EUs).The HMOGTA aims to solve the coordinated operation strategy of the electricity and natural gas networks considering the demand characteristics of DESs and EUs.In the HMOGTA,a hierarchical Stackelberg game model is developed for generating equilibrium strategies of DESs and EUs in each district energy network(DEN).Based on the game results,we obtain the coupling demand constraints of electricity and natural gas(CDCENs)which reflect the relationship between the amounts and prices of electricity and cooling(E&C)that DESs purchase from utility networks.Furthermore,the minimization of conflicting costs of E&G networks considering the CDCENs are solved by a multi-objective optimization method.A case study is conducted on a test IES composed of a 20-node natural gas network,a modified IEEE 30-bus system,and 3 DENs,which verifies the effectiveness of the proposed HMOGTA to realize fair treatment for all participants in the IES.
出处 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第2期444-457,共14页 中国电机工程学会电力与能源系统学报(英文)
基金 This work was supported by the State Key Program of National Natural Science Foundation of China(Grant No.51437006) the Natural Science Foundation of Guangdong Province,China(2018A030313799).
  • 相关文献

参考文献1

二级参考文献3

共引文献7

同被引文献73

引证文献7

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部