期刊文献+

多层静电丝网对于亚微米颗粒捕集效果的研究

Research on the trapping effect of multi-layer electrostatic mesh on sub-micron particles
下载PDF
导出
摘要 目的:研究多层静电丝网结构对于亚微米颗粒的捕集效果。方法:采用扫描电迁移率颗粒物粒径谱仪(SMPS)采集静电丝网上下游亚微米颗粒,分析其捕集效率和粒径分级效率的影响因素。结果:施加电场后丝网捕集效率显著提高,集尘丝网达到临界层数时效率难以增加;第一层集尘丝网捕集占比高于下游丝网,降低电压下游丝网捕集占比提高;增加丝网层数,最易穿透粒径(MPPS)增大,增强了对超细微米颗粒的捕集,于是捕集了更多的100~1000 nm颗粒。结论:静电丝网对亚微米颗粒的主要捕集机理为静电作用,增加丝网层数增强了扩散作用,高于一定层数时拦截作用和惯性作用也不可忽视。 Aims:This paper aims to study the filtration performance of multilayer electrostatic mesh structures on sub-micron particles.Methods:Downstream sub-micron particles on the electrostatic mesh were collected by scanning electron mobility particle size spectrometer(SMPS);and the influencing factors of their collection efficiency and particle size classification efficiency were analyzed.Results:After the electric field was applied,the collection efficiency of the mesh was significantly improved;and the efficiency was difficult to increase when the dust collection mesh reached the critical number of layers.The first layer of dust collection mesh captured a higher proportion than the downstream mesh;and the voltage was reduced.By increasing the number of screen layers,the most penetrating particle size(MPPS)increased.The capture of ultrafine micron particles was enhanced;and more 100~1000 nm particles were captured.Conclusions:The main mechanism of electrostatic mesh for capturing sub-micron particles is electrostatic effect.Increasing the number of layers of the mesh enhances the diffusion mechanism.When the number of layers is higher than a certain number of layers,the interception and impaction mechanism cannot be ignored.
作者 陈奕行 孙在 熊启航 CHEN Yixing;SUN Zai;XIONG Qihang(College of Metrology and Measurement Engineering,China Jiliang University,Hangzhou 310018,China)
出处 《中国计量大学学报》 2021年第2期217-224,共8页 Journal of China University of Metrology
基金 国家自然科学基金项目(No.10972209)。
关键词 静电丝网 PM1.0 PM0.1 分级效率 最易穿透力经 静电除尘器 electrostatic mesh PM1.0 PM0.1 classification efficiency MPPS ESP
  • 相关文献

参考文献4

二级参考文献75

  • 1Robinson M. 1961, AIEE Trans., 80:143.
  • 2Yue Yonggang, Hou Junping, Ai Zhongliang, et al. 2006, Plasma Sci. Technol., 8:697.
  • 3Richard M. 2005, J. Electrostat., 63:711.
  • 4Yuan Junxiang, Qiu Wei, Zheng Cheng, et al. 2009, Proceedings of the CSEE, 29:110 (in Chinese).
  • 5Roth J R. 2003, Phys. Plasmas, I0:2117.
  • 6Sidorenko A A. 2008, Flight testing of DBD plasma separation control system. Presented at 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada. American Institute of Aeronautics and As- tronautics, Reston, USA.
  • 7Moreau E. 2007, J. Appl. Phys., 40:605.
  • 8Huang Ren-Tsung. 2009, Energy Convers. Manage., 50:1789.
  • 9Jewell-Larsen N E, Ran H, Zhang Y, et al. 2009, Elec- trohydrodynamie (EHD) Cooled Laptop. Presented at 25th IEEE SEMI-THERM Symposium, San Jose, Cal- ifornia. IEEE, New York, USA.
  • 10Chen Y H, Barthakur N N.1991, Int. J. Biometeorol., 35:67.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部