期刊文献+

基于离焦型夏克-哈特曼传感器的定量相位成像技术 被引量:3

Quantitative Phase Imaging Based on Defocused Shack-Hartmann Sensor
原文传递
导出
摘要 提出了一种基于离焦型夏克-哈特曼传感器的定量相位成像技术。该技术利用离焦型夏克-哈特曼波前传感器记录两种不同波长的光的照射下的强度分布图,采用双波长相位恢复算法进行相位恢复,获得了透过相位物体的数字光场,实现了纯相位物体成像。数值模拟结果表明该定量相位成像技术方法简单、精度高、收敛速度快,是一种非常具有潜力的定量相位成像技术。 In this paper,an approach using a defocused Shack-Hartmann sensor for quantitative phase imaging(QPI)is proposed.In this technology,the defocused Shack-Hartmann wavefront sensor is used to record the intensity distribution under the illumination of light with two different wavelengths,and the dual wavelength phase retrieval algorithm is used for phase retrieval.The digital light field through the phase object is obtained,and the imaging of pure phase objects is realized.Numerical simulation results show that the QPI method is simple and with high accuracy and fast convergence,which is a very promising QPI technology.
作者 宋静威 李常伟 张思炯 Song Jingwei;Li Changwei;Zhang Sijiong(National Astronomical Observatories,Nanjing Institute of Astronomical Optics&Technology,Chinese Academy of Sciences,Nanjing,Jiangsu 210042,China;Key Laboratory of Astronomical Optics&Technology(Nanjing Institute of Astronomical Optics&Technology),Chinese Academy of Sciences,Nanjing,Jiangsu 210042,China;School of Astronomy and Space Science,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2021年第9期72-81,共10页 Acta Optica Sinica
基金 国家自然科学基金面上项目(11873069) 国家自然科学基金青年科学基金(11703060,11803058)。
关键词 成像系统 双波长 定量相位成像 离焦型夏克-哈特曼传感器 相位恢复 imaging systems dual-wavelength quantitative phase imaging defocused Shack-Hartmann sensor phase retrieval
  • 相关文献

参考文献3

二级参考文献30

  • 1T Zhang, I Yamaguchi. Three dimensional microscopy with phase shifting digital holography[J]. Opt Lett, 1998, 23(15): 1221-1223.
  • 2C D Depeursinge, E Cuche, P Marquet, et al.. Digital holography applied to microscopy[C]. SPIE, 2002, 4659: 30-34.
  • 3E Cuche, P Marquet, C Depeursinge. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Appl Opt, 1999, 38(34): 6994-7001.
  • 4J Fung, K E Martin, R W Perry, et al.. Measuring translational, rotational, and vibrational dynamics in colloids with digital holographic microscopy[J]. Opt Express, 2011, 19(9): 8051-8065.
  • 5T Colomb, E Cuche, F Charrière, et al.. Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation[J]. Appl Opt, 2006, 45(5): 851-863.
  • 6J Sheng, E Malkiel, J Katz. Digital holographic microscope for measuring three-dimensional particle distributions and motions[J]. Appl Opt, 2006, 45(16): 3893-3901.
  • 7I Yamaguchi, T Ida, M Yokota, et al.. Surface shape measurement by phase-shifting digital holography with a wavelength shift[J].Appl Opt, 2006, 45(29): 7610-7616.
  • 8P Ferraro, S Grilli, L Miccio, et al.. Full color 3-D imaging by digital holography and removal of chromatic aberrations[J]. J Display Technol, 2008, 4(1): 97-100.
  • 9N Warnasooriya, F Joud, P Bun, et al.. Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy[J]. Opt Express, 2010, 18(4): 3264-3273.
  • 10F Charrière, A Marian, F Montfort, et al.. Cell refractive index tomography by digital holographic microscopy[J]. Opt Lett, 2006, 31(2): 178-180.

共引文献19

同被引文献15

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部