摘要
提出一种面向光刻掩模优化框架基于半隐式离散化的数值技术方法,对框架中稳定时间相关模型中的扩散项、非扩散项分别进行隐式、显式的离散化,从而克服基于梯度下降的显式离散化方法中迭代步长受到抑制的稳定性约束要求。此外,选择对掩模图形的边缘与高频成分相对应的受监控像素点进行局部优化,而不是优化所有的掩模像素点,来降低计算复杂度。仿真结果显示,所提掩模优化算法在降低优化维度的同时提高了优化收敛效率。
This paper proposes to apply a semi-implicit difference scheme where diffusion terms in the time-dependent partial differential equation are discretized implicitly and non-diffusion ones explicitly thus overcoming the prohibitive step-size in lithographic mask optimization(MO).Further,monitoring pixels on mask pattern contour instead of all pattern pixels are selected locally corresponding to high-frequency layout component and optimized to ease the computation complexity.Superior MO performance is demonstrated by the simulation results in terms of improved convergence with reduced optimization dimensionality.
作者
沈逸江
王小朋
周延周
张振荣
Shen Yijiang;Wang Xiaopeng;Zhou Yanzhou;Zhang Zhenrong(School of Automation,Guangdong University of Technology,Guangzhou,Guangdong 510006,China;School of Computer Electronics and Information,Guangxi University,Nanning,Guangxi 530004,China)
出处
《光学学报》
EI
CAS
CSCD
北大核心
2021年第9期88-95,共8页
Acta Optica Sinica
基金
国家自然科学基金(61875041)
广东省自然科学基金(2016A030313709、2020A1515010633)
广西自然科学基金(2013GXNSFCA019019、2017GXNSFAA198227)。
关键词
成像系统
光刻
掩模优化
半隐式
水平集
光学临近校正
imaging systems
microlithography
mask optimization
semi-implicit
level set
optical proximity correction