期刊文献+

Highly reliable relative navigation for multi-UAV formation flight in urban environments 被引量:3

原文传递
导出
摘要 Formation flight of multiple Unmanned Aerial Vehicles(UAVs)is expected to bring significant benefits to a wide range of applications.Accurate and reliable relative position information is a prerequisite to safely maintain a fairly close distance between UAVs and to achieve inner-system collision avoidance.However,Global Navigation Satellite System(GNSS)measurements are vulnerable to erroneous signals in urban canyons,which could potentially lead to catastrophic consequences.Accordingly,on the basis of performing relative positioning with double differenced pseudoranges,this paper develops an integrity monitoring framework to improve navigation integrity(a measure of reliability)in urban environments.On the one hand,this framework includes a fault detection and exclusion scheme to protect against measurement faults.To accommodate urban scenarios,spatial dependence in the faults are taken into consideration by this scheme.On the other hand,relative protection level is rigorously derived to describe the probabilistic error bound of the navigation output.This indicator can be used to evaluate collision risk and to warn collision danger in real time.The proposed algorithms are validated by both simulations and flight experiments.Simulation results quantitatively reveal the sensitivity of navigation performance to receiver configurations and environmental conditions.And experimental results suggest high efficiency and effectiveness of the new integrity monitoring framework.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第7期257-270,共14页 中国航空学报(英文版)
基金 This study was co-supported by SJTU Global Strategic Partnership Fund(2019 SJTU–UoT) Master Research Agreement between SJTU and Honeywell Technology Solutions China(HTSC).
  • 相关文献

参考文献4

二级参考文献13

共引文献76

同被引文献19

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部