摘要
Silicon-based light sources, including light-emitting diodes(LEDs) and laser diodes(LDs) for information transmission, are urgently needed for developing monolithic integrated silicon photonics. Silicon with erbium ions(Er^(3+)) doped by ion implantation is considered a promising approach, but it suffers from an extremely low quantum efficiency. Here we report an electrically pumped superlinear emission at 1.54 μm from Er/O-doped silicon planar LEDs, which are produced by applying a new deep cooling process. Stimulated emission at room temperature is realized with a low threshold current of ~6 mA(~0.8 A∕cm^(2)). Time-resolved photoluminescence and photocurrent results have revealed the complex carrier transfer dynamics by relaxing electrons from the Si conduction band to the Er^(3+) ion. This picture differs from the frequently assumed energy transfer via electron–hole pair recombination of the silicon host. Moreover, the amplified emission from the LEDs is likely due to a quasi-continuous Er/O-related donor band created by the deep cooling technique. This work paves the way for fabricating superluminescent diodes or efficient LEDs at communication wavelengths based on rare-earth-doped silicon.
基金
National Natural Science Foundation of China(61790583,61874043,61874072,21703140)
Special-key project of the“Innovative Research Plan”
Shanghai Municipality Bureau of Education(2019-01-07-00-02-E00075)
Aero-Science Fund(201824X001)。