期刊文献+

Molecular mechanisms for the photoperiodic regulation of flowering in soybean 被引量:23

原文传递
导出
摘要 Photoperiodic flowering is one of the most important factors affecting regional adaptation and yield in soybean(Glycine max). Plant adaptation to long-day conditions at higher latitudes requires early flowering and a reduction or loss of photoperiod sensitivity;adaptation to short-day conditions at lower latitudes involves delayed flowering, which prolongs vegetative growth for maximum yield potential. Due to the influence of numerous major loci and quantitative trait loci(QTLs), soybean has broad adaptability across latitudes. Forward genetic approaches have uncovered the molecular basis for several of these major maturity genes and QTLs. Moreover, the molecular characterization of orthologs of Arabidopsis thaliana flowering genes has enriched our understanding of the photoperiodic flowering pathway in soybean. Building on early insights into the importance of the photoreceptor phytochrome A, several circadian clock components have been integrated into the genetic network controlling flowering in soybean: E1, a repressor of FLOWERING LOCUS T orthologs, plays a central role in this network. Here, we provide an overview of recent progress in elucidating photoperiodic flowering in soybean, how it contributes to our fundamental understanding of flowering time control, and how this information could be used for molecular design and breeding of high-yielding soybean cultivars.
出处 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2021年第6期981-994,共14页 植物学报(英文版)
基金 supported by grants from the National Natural Science Foundation of China(31725021)to F.K.and(31930083)B.L. the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources(SKLCUSA-b201803)to X.L.
  • 相关文献

参考文献6

二级参考文献181

  • 1韩天富,王金陵.中国大豆不同生态类型开花至成熟期对光周期的反应[J].作物学报,1996,22(1):20-26. 被引量:25
  • 2韩天富.大豆开花后的光周期反应[J].大豆科学,1996,15(1):69-73. 被引量:14
  • 3Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZlP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052-1056.
  • 4Adrian, J., Farrona, S., Reimer, J.J., Albani, M.C., Coupland, G., and Turck, F. (2010). cis-Regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell 22:1425-1440.
  • 5Aguilar-Martinez, J.A., Poza-Carri6n, C., and Cubas, P. (2007). Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458-472.
  • 6Ahn, J.H., Miller, D., Winter, V,J., Banfield, M.J., Lee, J.N., Yoo, S.Y., Henz, S.R., Brady, R.L., and Weigel, D. (2006). A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 25:605-614.
  • 7Amasino, R. (2010). Seasonal and developmental timing of flowering Plant J. 61:1001-1013.
  • 8Amaya, I., Ratcliffe, O.J., and Bradley, D.J. (1999). Expression of (CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species Plant Cell 11:1405-1418.
  • 9Ando, E., Ohnishi, M., Wang, Y., Matsushita, T., Watanabe, A., Hayashi, Y., Fujii, M., Ma, JoF., Inoue, S., and Kinoshita, T. (2013), TWIN SISTER OF FT, GIGANTEA, and CONSTANS have a positive but indirect effect on blue light-induced stomatal opening in Arabidopsis. Plant Physiol. 162:1529-1538.
  • 10Andr6s, F., and Coupland, G. (2012). The genetic basis of flowering responses to seasonal cues. Nat. Rev. Genet. 13:627-639. Bernard, R.L. (1972). Two genes affecting stem termination in soybeans. Crop Sci. 12:235-239.

共引文献115

同被引文献130

引证文献23

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部