摘要
We study conformal minimal two-spheres immersed into the quaternionic projective spaceℍP^(n) by using the twistor map.We present a method to construct new minimal two-spheres with constant curvature inℍP^(n),based on the minimal property and horizontal condition of Veronese map in complex projective space.Then we construct some concrete examples of conformal minimal two-spheres inℍP^(n) with constant curvature 2/n,n=4,5,6,respectively.Finally,we prove that there exist conformal minimal two-spheres with constant curvature 2/n inℍP^(n)(n≥7).
基金
This work was supported in part by the National Natural Science Foundation of China(Grant No.11871450).