期刊文献+

Minimal two-spheres with constant curvature in ℍPn

原文传递
导出
摘要 We study conformal minimal two-spheres immersed into the quaternionic projective spaceℍP^(n) by using the twistor map.We present a method to construct new minimal two-spheres with constant curvature inℍP^(n),based on the minimal property and horizontal condition of Veronese map in complex projective space.Then we construct some concrete examples of conformal minimal two-spheres inℍP^(n) with constant curvature 2/n,n=4,5,6,respectively.Finally,we prove that there exist conformal minimal two-spheres with constant curvature 2/n inℍP^(n)(n≥7).
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2021年第3期901-923,共23页 中国高等学校学术文摘·数学(英文)
基金 This work was supported in part by the National Natural Science Foundation of China(Grant No.11871450).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部