期刊文献+

改进免疫粒子群算法的传感器网络预警系统 被引量:2

Alerting System using Sensor Network based on Improved Immune Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 为节约传感器网络预警系统的传输能耗,提出了一种改进免疫粒子群算法以优化传输路径。为有效改善传统粒子群改进算法易于局部收敛的缺陷,引入了免疫机制,以最大程度的提升算法的全局搜索能力和收敛速度。基于多跳传输的险情点至监控点的传感器网络预警模型,通过引入免疫粒子群算法优化获得尽可能最优的多跳传输路径,以节约其能耗。由仿真验证结果可知,所提算法有效提升了粒子群的全局搜索能力和收敛速度,以能够寻到更优的多跳传输路径,从而减少了能量消耗。 In order to save the energy consumption of alerting system using sensor network,improve an immune particle swarm optimization algorithm is proposed for path transmission optimization.In order to improve the problem that traditional particle swarm optimization algorithm which is easy to fall into local convergence,the immune mechanism is introduced,so as to improve global optimization ability and iterative velocity effectively.Based on alerting system using sensor network from dangerous point to monitoring point by multi-hop,the optimal multi-hop transmission path is obtained by introducing immune particle swarm optimization algorithm,so as to save energy consumption.The simulation results show that the proposed algorithm can improve the global search ability and convergence speed of particle swarm effectively,and find a better optimized multi-hop transmission path,thus the energy consumption can be reduced.
作者 唐丽晴 胡云琴 Tang Liqing;Hu Yunqin(Institute of armed police and marine police,Ningbo Zhejiang,315801)
机构地区 武警海警学院
出处 《电子测试》 2021年第13期62-64,共3页 Electronic Test
关键词 高速铣削轻质合金 切削参数优化 粒子群算法 果蝇算法 自适应变异策略 high speed milling light alloy cutting parameter optimization particle swarm optimization fruit fly algorithm adaptive mutation strategy
  • 相关文献

参考文献4

二级参考文献46

  • 1崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展[J].计算机研究与发展,2005,42(1):163-174. 被引量:730
  • 2杨挺,孙雨耕,杨郁.无线传感器网络中一种节省资源的快速重路由算法[J].传感技术学报,2005,18(3):445-448. 被引量:14
  • 3Fukuyama Y.Fundamentals of particle swarm techniques [A].Lee K Y,El-Sharkawi M A.Modern Heuristic Optimization Techniques With Applications to Power Systems [M].IEEE Power Engineering Society,2002.45~51
  • 4Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources [A].Proceedings of the IEEE Congress on Evolutionary Computation [C].Piscataway,NJ:IEEE Service Center,2001.81~86
  • 5van den Bergh F.An analysis of particle swarm optimizers [D].South Africa:Department of Computer Science,University of Pretoria,2002
  • 6Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm [A].Proceedings of the World Multiconference on Systemics,Cybernetics and Informatics [C].Piscataway,NJ:IEEE Service Center,1997.4104~4109
  • 7Yoshida H,Kawata K,Fukuyama Y,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability [A].Proceedings of the International Conference on Intelligent System Application to Power System [C].Rio de Janeiro,Brazil,1999.117~121
  • 8Angeline P.Using selection to improve particle swarm optimization [A].Proceedings of IJCNN99[C].Washington,USA,1999.84~89
  • 9Shi Y,Eberhart R C.A modified particle swarm optimizer [R].IEEE International Conference of Evolutionary Computation,Anchorage,Alaska,May 1998
  • 10Shi Y,Eberhart R C.Empirical study of particle swarm optimization [A].Proceeding of Congress on Evolutionary Computation [C].:Piscataway,NJ:IEEE Service Center,1999.1945~1949

共引文献474

同被引文献25

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部