期刊文献+

基于改进蚁群求解特征子集的入侵检测方法 被引量:3

INTRUSION DETECTION METHOD BASED ON IMPROVED ANT COLONY OPTIMIZATION TO SOLVE THE FEATURE SUBNET
下载PDF
导出
摘要 为了去除冗余特征,提高入侵检测系统的检测性能,提出一种基于改进蚁群算法求解特征子集的入侵检测方法。对蚂蚁的初始位置、启发函数、信息素更新策略及状态转移概率函数均做了优化。对KDD CUP 99数据集进行预处理,根据信息熵理论对特征进行初步提取。由提取的特征点构造邻接拓扑,用改进蚁群算法进一步求解特征子集。通过十折交叉验证法训练及优化改进蚁群算法及支持向量机的参数,并测试该入侵检测方法的性能。实验结果表明,相比其他方法,所提方法的性能较优,F-Measure值有一定提升,测试时间显著减少。 In order to reduce the redundant features and enhance the performance of the detection of intrusion detection system(IDS),the intrusion detection method based on improved ant colony optimization(ACO)to solve the feature subnet is proposed.The initial positions of ants,heuristic function,pheromone updating strategy and state transition probability function were all optimized in improved ACO.The datasets of KDD CUP 99 were preprocessed and the features were initially extracted according to the information entropy theory;the adjacent topologies were structured with extracted feature nodes and the feature subsets were further obtained by improved ant colony optimization;the parameters of improved ACO and support vector machine(SVM)were optimized by training,and the performance of the proposed intrusion detection method was testified using ten-fold cross-validation on KDD CUP 99 data set.The experimental results show that compared with other methods,the proposed intrusion detection method performs better,the F-Measure value is enhanced to some extent and the testing time is reduced significantly.
作者 梁本来 朱磊 Liang Benlai;Zhu Lei(School of Information Engineering,Zhongshan Polytechnic,Zhongshan 528404,Guangdong,China;College of Computer Science and Engineering,Xi an University of Technology,Xi’an 710048,Shaanxi,China)
出处 《计算机应用与软件》 北大核心 2021年第7期323-331,共9页 Computer Applications and Software
基金 国家自然科学基金项目(61602374) 广东省普通高校青年创新人才项目(2017Gk QNCX085) 中山职业技术学院青年科研骨干项目(2019GG05) 中山市社会公益科技研究项目(2019B2046)。
关键词 入侵检测 特征子集 蚁群算法 支持向量机 十折交叉验证 参数优化 Intrusion detection Feature subset Ant colony optimization Support vector machine Ten-fold cross-validation Parameter optimization
  • 相关文献

参考文献13

二级参考文献92

共引文献218

同被引文献53

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部