摘要
前额皮层是哺乳动物环境认知能力的重要神经生理基础,许多研究基于皮层网络结构对前额皮层进行计算建模,使机器人能够完成环境认知与导航任务.但是,对皮层网络模型神经元噪声(一种干扰神经元规律放电的内部电信号)鲁棒性方面的研究不多,传统模型采用的奖励扩散方法存在着导航性能随噪声增大而下降过快的问题,同时其路径规划方法效果不好,无法规划出全局最短路径.针对上述问题,本文在皮层网络的基础上引入波前传播算法,结合全局抑制神经元来设计奖励传播回路,同时将时间细胞和位置偏好细胞引入模型的路径规划回路以改善路径规划效果.为了验证模型的有效性,本文复现了心理学上两个经典的环境认知实验.实验结果表明,本模型与其他皮层网络模型相比表现出更强的神经元噪声鲁棒性.同时,模型保持了较好的路径规划效果,与传统路径规划算法相比具有较高的效率.
Prefrontal cortex is important physiological foundation of environment cognition ability in mammals.Many research seek to make computation model of prefrontal cortex based on cortical network structure,in order to enable robots realize tasks related to environment cognition and navigation.However,there are few works involving in cortical network model's robustness to neuron noise,which is an internal electric signal that generally impedes regular spiking of neurons.Tradition models using reward diffusion method have problem of rapid deterioration of navigation performance under increasing neuron noise.To solve this problem,on the basis of cortical network,this paper recruits wavefront propagation method combined with globally inhibitory neuron to design reward propagating circuit,and introduces time cell and position preference cell into path planning circuit.Two classic environment cognition experiments were reproduced to verify the model.Results show that comparing to other cortical network model,our model exhibits more robustness to neuron noise.Meanwhile,this model keeps good results of environment cognition,and has higher path planning efficiency comparing to traditional path planning algorithms.
作者
武悦
阮晓钢
黄静
柴洁
WU Yue;RUAN Xiao-Gang;HUANG Jing;CHAI Jie(Information Department,Beijing University of Technology,Beijing 100124;Beijing Key Laboratory of Computational In-telligence and Intelligent System,Beijing 100124)
出处
《自动化学报》
EI
CAS
CSCD
北大核心
2021年第6期1401-1411,共11页
Acta Automatica Sinica
基金
国家自然科学基金(61773027)
北京市教育委员会科技计划(KM201810005028)
北京市自然科学基金(4174083)资助。
关键词
皮层网络
波前传播
神经元噪声
环境认知
类脑计算
Cortical network
wavefront propagation
neuron noise
environment cognition
brain-inspired computing