期刊文献+

基于用户评分权重的矩阵分解推荐算法 被引量:1

Matrix Factorization Recommendation Algorithm Based on User Rating Weight
下载PDF
导出
摘要 在传统的推荐算法中存在数据评分稀疏的问题,同时,在建立预测模型时默认每个用户评分都是真实可信的。但实际评分中存在某些数据不符合用户的整体评分趋势和偏好。为了解决上述问题,对每项用户评分的真实性进行计算,在进行评分预测时,使符合用户整体评分趋势的评分数据获得更高的权重,让推荐算法更精准的把握用户和项目的特征信息,提升推荐系统的整体性能。经过在Movie Lens 100k数据集上与其它三种经典算法的对比实验表明,本文提出的改进算法能更好地把握用户真实喜好,提高预测的准确性。 In the traditional recommendation algorithm,there is a problem of sparse data scores.At the same time,when building a prediction model,it is assumed that each user's score is true and credible.However,there are some data in actual ratings that do not conform to the user's overall rating trends and preferences.In order to solve the above problems,this paper calculates the authenticity of each user's rating.When making rating predictions,the rating data that conforms to the user's overall rating trend is given higher weight,so that the recommendation algorithm can more accurately grasp the characteristics of users and items so as to improve the overall performance of the recommendation system.The comparative experiments on the Movie Lens 100k dataset with three other classic algorithms show that the improved algorithm proposed in this paper can better get the real preferences of users and improve the accuracy of prediction.
作者 董志恒 牟胜东 DONG Zhi-heng;MU Sheng-dong(Anhui University of Science and Technology,Huainan,Anhui 232001,China;Research Center for Development and Utilization of Special Resources in Wuling Mountain of Changjiang Normal University,Chongqing 408170,China)
出处 《吉林工程技术师范学院学报》 2021年第5期92-94,共3页 Journal of Jilin Engineering Normal University
关键词 矩阵分解 推荐算法 评分趋势 评分权重 Matrix Decomposition Recommendation Algorithm Scoring Trend Scoring Weight
  • 相关文献

参考文献1

二级参考文献4

共引文献23

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部