期刊文献+

有关算子的一些Log-次优化不等式和对称拟范数不等式 被引量:2

Logarithmic Submajorization and Symmetric Quasi-Norm Inequalities on Operators
下载PDF
导出
摘要 本文利用优化理论及拟范数的性质研究了与Hayajneh-Kittaneh猜想相关的算子不等式.设E(M)是非交换对称拟Banach空间,x_(i)∈E(M)^((p)+),y_(i)∈E(M)^((q)+)使得x_(i)y_(i)=y_(i)x_(i),i=1,2,…,n,我们证明了||(∑^(k)_(j)=1 x^(1/2)^(i)y^(1/2)_(i))^(2)||E(M)^((r))≤(∑^(k)_(j)=1_(xi))^(1/2)(∑^(k)_(j)=1 y i)(∑^(k)_(j)=1 x i)^(1/2)||E(M)^((r))≤||(∑^(k)_(j)=1 x i)(∑^(k)_(j)=1 y i)||E(M)^((r)).其中1≤p,q,r<∞且1/r=1/p+1/q.同时我们还给出了一些与log-次优化相关的不等式. Using the method of majorization and the properties of quasi-norms,we give some quasi-norm inequalities related to Hayajneh and Kittaneh’s conjecture for operator in semifinite von Neumann algebras.Let E(M)be symmetric quasi-Banach spaceandlet x_(i)∈E(M)^((p)+),y_(i)∈E(M)^((q)+)with x_(i)y_(i)=y_(i)x_(i),i=1,2,…,n,then||(∑^(k)_(j)=1 x^(1/2)^(i)y^(1/2)_(i))^(2)||E(M)^((r))≤(∑^(k)_(j)=1_(xi))^(1/2)(∑^(k)_(j)=1 y i)(∑^(k)_(j)=1 x i)^(1/2)||E(M)^((r))≤||(∑^(k)_(j)=1 x i)(∑^(k)_(j)=1 y i)||E(M)^((r)).Some logarithmic submajorization inequalities for operator in semifinite von Neumann alge-bras are also considered.
作者 王云 闫成 WANG Yun;YAN Cheng(School of Mathematics and System Sciences,Xinjiang University,Urumqi Xinjiang 830046,China)
出处 《新疆大学学报(自然科学版)(中英文)》 CAS 2021年第4期407-424,共18页 Journal of Xinjiang University(Natural Science Edition in Chinese and English)
基金 天山青年计划-优秀科技人才项目(2018Q012) 新疆维吾尔自治区自然科学基金(2018D01C073) 国家自然科学基金(11761067).
关键词 log-次优化不等式 VONNEUMANN代数 非交换对称拟Banach空间 logarithmic submajorisation inequalities von Neumann algebras noncommutative symmetric quasi-Banach space
  • 相关文献

参考文献1

二级参考文献14

  • 1Hirzallaha O, Kittaneh F. Inequalities for sums and direct sums of Hilbert space operators [J]. Linear Algebra and its Applications, 2007, 424: 71-82.
  • 2Nelson E. Notes on Non-Commutative Integration [J]. J Funct Anal, 1974, 15: 103-116.
  • 3Fack T. Sur la notion de valeur carateristique [J]. J Operator Theory, 1982, 7: 307-333.
  • 4Fack T, Kosaki H. Generalized s-numbers of τ-measurable Operators [J]. Pac J Math, 1986, 123: 269-300.
  • 5TaKesaki M. Theory of Operator Algebras Ⅰ[M]. Berlin-Heidelberg-New York: Springer, 1979.
  • 6Terp M. Lp Spaces Associated with yon Neumann Algebras. Notes, Copenhagen Univ, 1981.
  • 7Dykema K J, Kalton N J. Sums of commutators in ideals and modules of type Ⅱ factors [J]. Ann Inst Fourier, 2005, 55: 931-971.
  • 8Brown L, Kosaki H. Jensen's inequality in semi-finite von Neumann algebras [J]. J Operator Theory, 1990, 23: 3-19.
  • 9Zhan Xingzhi. On singular numbers of τ-measurable operators [J]. Journal of Shanghai University (English Edition), 2004, 8: 444-447.
  • 10Conway J B. A Course in Operator Theory [M]. Rhode Island: American Mathematical Society, 2000.

共引文献1

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部