期刊文献+

二维形状特征描述及分类识别研究进展综述 被引量:2

Review on Research Progress of 2D Shape Description and Classification
下载PDF
导出
摘要 二维形状分类识别是计算机视觉和模式识别等领域的一个重要问题,在目标识别、图像理解等应用中发挥着重要作用。针对二维形状分类识别研究,主要从特征描述、形状分类识别、形状标准数据库三个方面综述了该方向近年来最新的研究工作。综合分析了二维形状特征表示方法,主要包括基于轮廓的、基于区域的、基于骨架的以及基于多特征融合的方法,并简要评述;介绍并分析了二维形状分类识别方法,主要包括传统机器学习分类器、集成分类器、深度学习方法等;概述了二维形状识别中常用的标准数据库;展望了二维形状识别分类研究的发展趋势。 2 D shape classification and recognition is an important issue in the fields of computer vision and pattern recognition, and plays an important role in target recognition, image understanding and other applications. In this paper, the latest research work on 2D shape classification and recognition is reviewed from three aspects:feature description, shape classification and recognition, shape standard database. First, a comprehensive analysis of 2D shape feature representation methods, including contour-based, area-based, skeleton-based and multi-feature fusion methods, is made, and a brief review is given. Then, 2D shape classification and recognition methods are introduced and analyzed, including traditional machine learning classifiers, ensemble classifiers, deep learning methods, etc. Then, the standard databases commonly used in 2D shape recognition are summarized. Finally, the development trend of 2D shape recognition classification research is prospected.
作者 刘磊 邹媛媛 陈泊璇 LIU Lei;ZOU Yuanyuan;CHEN Boxuan(School of Mechanical Engineering,Shenyang Jianzhu University,Shenyang 110168,China;National-Local Joint Engineering Laboratory of NC Machining Equipment and Technology of High-Grade Stone,Shenyang 110168,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第14期39-47,共9页 Computer Engineering and Applications
基金 辽宁省自然科学基金(20180551124)。
关键词 二维形状 形状描述子 形状分类 特征融合 分类器集成 2D shape shape descriptor shape classification feature fusion ensemble classifier
  • 相关文献

参考文献4

二级参考文献15

  • 1Zhu S C,Yuille A L.FORMS:A flexible object recognition and modeling system[J].Intemational Journal on Computer Vision, 1996,20(3) :187-212.
  • 2Bai X,Latecki L J,Liu W Y.Skeleton pruning by contour partitioning with discrete curve evolution[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29(3) : 449-462.
  • 3Siddiqi K, Shkoufandeh A, Dickinson S, et al.Shock graphs and shape matching[J].Intemational Journal on Computer Vision, 1999,35(1) : 13-32.
  • 4Sebastian T B, Klein P N,Kimia B B.Recognition of shapes by editing their shock graphs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(5):550-571.
  • 5Hilaga M, Shinagawa Y, Kohmura T, et al.Topology matching for fully automatic similarity estimation of 3D shapes[C]//Proceedings of ACM SIGGRAPH, New York, 2001 : 203-212.
  • 6Bai X, Latecki L J.Path similarity Skeleton graph matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(7) : 1282-1292.
  • 7Latecki L J, Wang Q, Koknar-Tezel S, et al.Optimal subsequence bijection[C]//IEEE Int Conf on Data Mining (ICDM), Omaha, USA, 2007.
  • 8Baseski E, Erdem A, Tari S.Dissimilarity between two skeletal trees in context[J].Pattem Recognition, 2009,42 (3) : 370-385.
  • 9谢邦旺,王加俊.一种基于轮廓的图像检索算法[J].中国图象图形学报,2008,13(7):1367-1373. 被引量:7
  • 10李宗民,陆天波,桑鑫焱,秦宝山.基于最小惯性轴及链码的图像形状描述方法[J].通信学报,2009,30(4):1-5. 被引量:3

共引文献18

同被引文献19

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部