期刊文献+

面向混合乐器音乐分析的稀疏特征提取方法 被引量:6

Sparse Feature Extraction Method for Mixed Instruments Music Analysis
下载PDF
导出
摘要 为了解决混合乐器音乐数据的成分识别与解析研究中,现有方法过度依赖数据标签,且往往基于单纯频域或物理特征,与乐器固有性质关联不明显、对复杂成分的敏感度不足的问题,提出了一种基于稀疏分解和多种乐器成分字典的稀疏特征提取方法,通过对稀疏系数向量进行深入分析,得到可以独立使用,具有高可解释性的稀疏音乐特征。实验结果证明,这种特征能够直观地反映乐器成分组成与音乐情绪的变化,在混合乐器成分分析和其他各类时变信号分析领域具有显著的应用价值。 In the research of instrument recognition and analysis of mixed instrument music data,the existing methods rely heavily on data labels,while are often based on simple frequency domain or physical characteristics,which are not obviously related to the inherent properties of the instrument,and lack of sensitivity to complex components.This paper proposes a sparse feature extraction method based on sparse decomposition and multiple instrument component dictionaries,which can get sparse features that will be used independently&with high interpretability through in-depth analysis of the sparse coefficient vector.Experimental result shows that these features can express the composition of musical instruments and the changes of musical mood directly,and also shows significant application value in the field of composition analysis of mixed musical instruments and other kinds of time-varying signal analysis.
作者 岳琪 徐忠亮 郭继峰 YUE Qi;XU Zhongliang;GUO Jifeng(College of Information and Computer Engineering,Northeast Forestry University,Harbin 150040,China)
出处 《计算机工程与应用》 CSCD 北大核心 2021年第14期181-186,共6页 Computer Engineering and Applications
基金 国家自然科学基金(61702091)。
关键词 特征提取 稀疏分解 稀疏特征 混合乐器识别 音乐时域分析 feature extraction sparse decomposition sparse feature mixed instrument recognition music time domain analysis
  • 相关文献

参考文献4

二级参考文献31

  • 1WU Chunyan,LIU Jian,PENG Fuqiang,YU Dejie,LI Rong.Gearbox Fault Diagnosis using Adaptive Zero Phase Time-varying Filter Based on Multi-scale Chirplet Sparse Signal Decomposition[J].Chinese Journal of Mechanical Engineering,2013,26(4):831-838. 被引量:16
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3尹忠科,解梅,王建英.基于稀疏分解的图像去噪[J].电子科技大学学报,2006,35(6):876-878. 被引量:25
  • 4Do M N, Vetterli M. Framing pyramids [J]. IEEE Transaction on Signal Processing, 2003, 9(51):3736--3745.
  • 5Candes E, Demanet L, Donoho D, et al. Fast discrete curvelet transforms [D]. Stanford, California, USA: Department of Statistics, Stanford University, 2005.
  • 6Donoho D L. Wedgelets: nearly minimax estimation of edges [J]. Annals of Statistics, 1999, 27(3):859--897.
  • 7Peyre G, Mallat S. Discrete bandelets with geometric orthogo- nal filters[C]. Proceedings of ICIP. Los Alamitos, USA: IEEE Computer Society, 2005 : 65--68.
  • 8Mallat S, Zhang Z. Matching pursuits with time-frequency dic- tionaries [J]. IEEE Transaction on Image Processing, 1993, 41 (12) : 3397--3415.
  • 9Tropp J. Greed is good: Algorithm results for sparse approxi- mation[J]. IEEE Trans. Information Theory, 2004, 50(10):2231-2242.
  • 10Gilbert A, Muthukrishnan S, Strauss M, et al. Improved sparse approximation over quasi-coherent dictionaries [C]. ICIP, Barcelona, Spain, Sep. , 2003,1:37-40.

共引文献125

同被引文献70

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部