期刊文献+

Genome editing in grass plants 被引量:1

原文传递
导出
摘要 Cereal crops including maize,rice,wheat,sorghum,barley,millet,oats and rye are the major calorie sources in our daily life and also important bioenergy sources of the world.The rapidly advancing and state-of-the-art genome-editing tools such as zinc finger nucleases,TAL effector nucleases,and clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated systems(CRISPR-Cas9-,CRISPR-Cas12a-and CRISPR/Cas-derived base editors)have accelerated the functional genomics and have promising potential for precision breeding of grass crops.With the availability of annotated genomes of the major cereal crops,application of these established genome-editing toolkits to grass plants holds promise to increase the nutritional value and productivity.Furthermore,these easy-to-use and robust genome-editing toolkits have advanced the reverse genetics for discovery of novel gene functions in crop plants.In this review,we document some of important progress in development and utilization of genome-editing tool sets in grass plants.We also highlight present and future uses of genome-editing toolkits that can sustain and improve the quality of cereal grain for food consumption.
出处 《aBIOTECH》 2020年第1期41-57,共17页 生物技术通报(英文版)
基金 The authors gratefully acknowledge grant support from the National Science Foundation(1936492 to B.Y.) a subaward to MU from Heinrich Heine University of Dusseldorf,which was funded by the Bill&Melinda Gates Foundation[OPP1155704](B.Y.).
  • 相关文献

参考文献3

二级参考文献14

  • 1Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics. 188, 773-782.
  • 2Congo L., Ran, F.A.. Cox. D., Lin, S., Barretto, R., Habib, N., Hsu, P.O., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPRlCas systems. Science 339, 819-823.
  • 3Gaj, T., Gersbach, C.A., and Barbas, C.F., III (2013). ZFN, TALEN, and CRISPRlCas-based methods for genome engineering. Trends Biotechno/. 31, 397-405.
  • 4Huang, V.S., and u, H.M. (2009). Arabidopsis CHLl2 can substitute for CHLl1. Plant Physio/. 150, 636-645.
  • 5Jinek. M . Chylinski. K . Fonfara. I.. Hauer. M . Doudna. J.A . and Charpentier. E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337. 816-821.
  • 6Li, T . Liu. B . Spalding. M.H . Weeks. D.P.. and Yang. B. (2012). High-efficiency TALEN-based gene editing produces diseaseresistant rice. Nat. Biotechnol. 30. 390-392.
  • 7Mahfouz. M.M . Li, L.. Shamimuzzaman. M . Wibowo. A . Fang. X . and Zhu. J.K. (2011). De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc. Natl Acad. Sci. USA. 108,2623-2628.
  • 8Symington, L.S . and Gautier, J. (2011). Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 4S, 247-271.
  • 9Zhang, Y., Zhang, F., u, X., Baller, J.A., Qi. Y., Starker, c.e . Bogdanove, AJ., and Voytas, D.F. (2013). Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol161, 20-27.
  • 10Kunling Chen,Caixia Gao.TALENs:Customizable Molecular DNA Scissors for Genome Engineering of Plants[J].Journal of Genetics and Genomics,2013,40(6):271-279. 被引量:20

共引文献230

同被引文献3

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部