期刊文献+

Technological breakthroughs in generating transgene-free and genetically stable CRISPR-edited plants 被引量:7

原文传递
导出
摘要 CRISPR/Cas9 gene-editing technologies have been very effective in editing target genes in all major crop plants and offer unprecedented potentials in crop improvement.A major challenge in using CRISPR gene-editing technology for agricultural applications is that the target gene-edited crop plants need to be transgene free to maintain trait stability and to gain regulatory approval for commercial production.In this article,we present various strategies for generating transgene-free and target geneedited crop plants.The CRISPR transgenes can be removed by genetic segregation if the crop plants are reproduced sexually.Marker-assisted tracking and eliminating transgenes greatly decrease the time and labor needed for identifying the ideal transgene-free plants.Transgenes can be programed to undergo self-elimination when CRISPR genes and suicide genes are sequentially activated,greatly accelerating the isolation of transgene-free and target gene-edited plants.Transgene-free plants can also be generated using approaches that are considered non-transgenic such as ribonucleoprotein transfection,transient expression of transgenes without DNA integration,and nano-biotechnology.Here,we discuss the advantages and disadvantages of the various strategies in generating transgene-free plants and provide guidance for adopting the best strategies in editing a crop plant.
出处 《aBIOTECH》 2020年第1期88-96,共9页 生物技术通报(英文版)
基金 This work was supported by grants from the National Transgenic Science and Technology Program(2019ZX08010-003,2019ZX08010-001)to YH.
  • 相关文献

参考文献4

二级参考文献21

  • 1Peijin Li,Yonghong Wang,Qian Qian,Zhiming Fu,Mei Wang,Dali Zeng,Baohua Li,Xiujie Wang,Jiayang Li.LAZY1 controls rice shoot gravitropism through regulating polar auxin transport[J].Cell Research,2007,17(5):402-410. 被引量:89
  • 2Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics. 188, 773-782.
  • 3Congo L., Ran, F.A.. Cox. D., Lin, S., Barretto, R., Habib, N., Hsu, P.O., Wu, X., Jiang, W., Marraffini, L.A., et al. (2013). Multiplex genome engineering using CRISPRlCas systems. Science 339, 819-823.
  • 4Gaj, T., Gersbach, C.A., and Barbas, C.F., III (2013). ZFN, TALEN, and CRISPRlCas-based methods for genome engineering. Trends Biotechno/. 31, 397-405.
  • 5Huang, V.S., and u, H.M. (2009). Arabidopsis CHLl2 can substitute for CHLl1. Plant Physio/. 150, 636-645.
  • 6Jinek. M . Chylinski. K . Fonfara. I.. Hauer. M . Doudna. J.A . and Charpentier. E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337. 816-821.
  • 7Li, T . Liu. B . Spalding. M.H . Weeks. D.P.. and Yang. B. (2012). High-efficiency TALEN-based gene editing produces diseaseresistant rice. Nat. Biotechnol. 30. 390-392.
  • 8Mahfouz. M.M . Li, L.. Shamimuzzaman. M . Wibowo. A . Fang. X . and Zhu. J.K. (2011). De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc. Natl Acad. Sci. USA. 108,2623-2628.
  • 9Symington, L.S . and Gautier, J. (2011). Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 4S, 247-271.
  • 10Zhang, Y., Zhang, F., u, X., Baller, J.A., Qi. Y., Starker, c.e . Bogdanove, AJ., and Voytas, D.F. (2013). Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol161, 20-27.

共引文献237

同被引文献50

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部