期刊文献+

一种基于RefineDet网络和霍夫变换的高速铁路接触网吊弦状态多尺度检测方法 被引量:7

A Multi-scale Detection Method for Dropper States in High-speed Railway Contact Network Based on RefineDet Network and Hough Transform
下载PDF
导出
摘要 针对高速铁路接触网吊弦的状态检测问题,该文提出一种基于RefineDet网络和霍夫变换的吊弦多尺度定位与识别方法。通过设计RefineDet网络的粗调和精调模块对吊弦整体结构进行定位,采用霍夫变换锁定吊弦中部吊悬线所在直线,并利用旋转因子沿直线方向提取吊悬线区域;以吊悬线区域代替吊弦结构整体区域送入分类网络进行训练,通过所建立的多尺度吊弦状态检测模型,实现吊弦状态的精确识别。实验结果表明,吊弦定位模型的准确率达95.3%以上;霍夫变换可排除无效区域对吊弦状态识别的干扰,提高分类网络的训练速度,吊弦状态识别模型准确率达97.5%以上。 In order to solve the problems of detection and state analysis of high-speed railway catenary droppers,this paper proposes a multi-scale detection method for dropper states based on Refinedet network and Hough transform.First,the positioning result of droppers through Refinedet network is obtained,and Hough transform is used to locate where the dropper line is;Then the surrounding area of the dropper line is extracted with a ralated twiddle factor.Those extracted areas,replacing the results of detection net,are fed into classification network for training the final dropper state analysis mode.Experiments show that the accuracy of dropper detection model is over 95.3%,and the dropper state analysis model can eliminate the impact of meaningless area pixels while accelerating training process,the final state analysis model achieves a high accuracy over 97.5%.
作者 齐冬莲 钱佳莹 闫云凤 曾晓红 QI Donglian;QIAN Jiaying;YAN Yunfeng;ZENG Xiaohong(Zhejiang University,Hangzhou 310027,China;Southwest Jiaotong University,Chengdu 611756,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2021年第7期2014-2022,共9页 Journal of Electronics & Information Technology
基金 浙江省重点研发计划(2019C01001) 国家青年科学基金(62001416) 中央高校基本科研业务费专项基金(2018FZA122)。
关键词 目标检测 深度学习 接触网4C 缺陷分析 霍夫变换 Target detection Deep learning Contact network 4C Defect analysis Hough transform
  • 相关文献

参考文献4

二级参考文献26

共引文献54

同被引文献44

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部