期刊文献+

基于ReliefF-Pearson的嗅觉脑电通道选择 被引量:8

ReliefF-Pearson Based Olfactory ElectroEncephaloGram Channel Selection
下载PDF
导出
摘要 基于脑电(EEG)信号的气味识别研究在嗅觉功能客观评价及嗅觉障碍疾病诊断等方面具有重要的应用价值。在实际应用场景中使用过多EEG通道会带来诸多不便,因此研究如何选择EEG通道尤为重要。该文针对嗅觉EEG信号分类中的通道选择问题,提出了一种新型的基于ReliefF-Pearson的嗅觉EEG通道选择算法。该算法结合ReliefF的权值思想和Pearson系数的相关性原理对EEG通道进行选择。结果表明,与传统基于ReliefF的通道选择算法相比,该文所提算法在保证一定分类准确率的同时能够显著减少使用的通道数量,并且通道选择的结果不依赖人为经验和分类器。此外,使用该方法获取的通道,其空间分布与已有的嗅觉神经生理学位置相一致,进一步证实了该方法的科学性和有效性。该文所提算法为嗅觉EEG通道选择的研究提供了新思路。 The study of odor recognition based on ElectroEncephaloGram(EEG)signals has important application value to objectively evaluating olfactory function and diagnosing olfactory disorders.Because of the inconvenience caused by using too many EEG channels in practical application scenarios,it is particularly important to study how to choose EEG channels.In this paper,a new ReliefF-Pearson channel selection algorithm is proposed to solve the channel selection problem in the classification of olfactory EEG signals.The algorithm combines the weight idea of ReliefF and the correlation principle of Pearson coefficient to select EEG channels.Experimental results show that compared with the traditional ReliefF-based channel selection algorithm,the proposed algorithm could significantly reduce the number of channels used while ensuring a certain classification accuracy,and the result of channel selection does not depend on human experience and classifiers.In addition,the spatial distribution of the selected channels is consistent with the existing olfactory neurophysiological position,which further confirms the scientificity and effectiveness of this method.The proposed method provides new idea for the research of olfactory EEG channel selection.
作者 张小内 翟文鹏 侯惠让 孟庆浩 ZHANG Xiaonei;ZHAI Wenpeng;HOU Huirang;MENG Qinghao(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2021年第7期2032-2037,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61573253) 国家重点研发项目(2017YFC0306200)。
关键词 嗅觉脑电 通道选择 气味识别 ReliefF-Pearson Olfactory ElectroEncephaloGram(EEG) Channel selection Odor identification ReliefF-Pearson
  • 相关文献

参考文献4

二级参考文献43

  • 1WOLPAW J R, BIRBAUMER N, MCFARLAND D J, et al.Brain-computer interfaces for communication and control [J]. Clin Neurophysiol, 2002, 113(6): 767-791.
  • 2MULLER-PUTZ G R, SCHERER R, PFURTSCHELLER G, et al. EEG-based neuroprosthesis control: a step towards clinical practice [J]. Neurosei Lett, 2005, 382 (1-2) : 169- 174.
  • 3YUAN Han, DOUD A, GURURAJAN A, et al. Cortical imaging of event-related (de) synchronization during online control of brain-computer interface using minimum-norm esti- mates in frequency domain [J]. IEEE Trans Neural Syst Rehabil Eng, 2008, 16(5): 425-431.
  • 4FABIANI G E, MCFARLAND D J, WOLPAW J R, et al. Conversion of EEG activity into cursor movement by a braincomputer interface (BCI)[J]. IEEE Trans Neural Syst Rehabil Eng, 2004, 12(3): 331-338.
  • 5YUAN Han, HE Bin. Brain-computer interfaces using sensurimotor rhythms: current state and future perspectives [J]. IEEE Trans Biomed Eng, 2014, 61(5): 1425-1435.
  • 6PFURTSCHELLER G, LOPES DA SILVA F H. Event-related EEG/MEG synchronization and desynchronization: basic principles[J]. Clin Neurophysiol, 1999, 110(11): 1842- 1857.
  • 7MILLER K J, I.EUTHARDT E C, SCHALK G, et al. Spectral changes in cortical surface potentials during motor move ment[J]. J Neurosci, 2007, 27(9): 2424-2432.
  • 8LAL T N, SCHRODER M, HINTERBERGER T, et al. Support vector channel selection in BCI [J]. IEEE Trans Biomed Eng, 2004, 51(6): 1003-1010.
  • 9ARVANEH M, GUAN C, ANG K K, et al. Optimizing the channel selection and classification accuracy in EEG-based BCI [J]. IEEE Trans Biomed Eng, 2011, 58(6): 1865-1873.
  • 10WANG Yijun, GAO Shangkai, GAO Xiaorong. Common spatial pattern method for channel selelction in motor imagery based brain-coruputer interface [C]// 27th Annual Interna- tional Conference of the Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. Shanghai: 2005: 5392- 5395.

共引文献42

同被引文献90

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部